Remark
When you are asked a question like this, the first thing to do is search out a formula and put some limits on it.
Formula
I = E/R which comes from E = IR. To get to the derived formula, divide both sides by R
E/R = I*R/R
E/R = I
Discussion
This is an inverse relationship. That means that as one goes up the other one will go down.
So in this case you keep E constant and you manipulate R and look at your results for I
Case 1
Let us say that E = 10 volts
Let us also say the R = 10 ohms
I = E/R
I = 10/10
I = 1 ohm
Case Two
Let's raise the Resistance to 100 ohms
E = 10
R = 100
I = 10/100 = 0.1
Conclusion
As the Resistance goes up, the current goes down. Answer: A
Answer:
I think they cross the line when they force sports into their child's life, and take away their choice of what they want to do so they essentially waste their childhood preparing for something that may never happen or they just don't get the opportunity to explore their artistic abilities.
Explanation:
Explanation:
Given that,
Linear speed of both disks is 5 m/s
Mass of disk 1 is 10 kg
Radius of disk 1 is 35 cm or 0.35 m
Mass of disk 2 is 3 kg
Radius of disk 2 is 7 cm or 0.07 m
(a) The angular velocity of disk 1 is :

(b) The angular velocity of disk 2 is :

(c) The moment of inertia for the two disk system is given by :

Hence, this is the required solution.
Answer:
Magnets come in a variety of shapes and one of the more common is the horseshoe (U) magnet. The horseshoe magnet has north and south poles just like a bar magnet but the magnet is curved so the poles lie in the same plane. The magnetic lines of force flow from pole to pole just like in the bar magnet.