1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
noname [10]
3 years ago
15

Secondary evidence is the basis for drawing scientific conclusions. a. True b. False

Physics
2 answers:
e-lub [12.9K]3 years ago
8 0
The answer is false! Hope that helps! :) 
barxatty [35]3 years ago
5 0

The answer would be, B-False

You might be interested in
An electron initially has a speed 16 km/s along the x-direction and enters an electric field of strength 27 mV/m that points in
weqwewe [10]

Answer:

a)t=1.4\times 10^{-5}\ s

b)S= 46.4 cm

Explanation:

Given that

Velocity = 16 Km/s

V= 16,000 m/s

E= 27 mV/m

E=0.027 V/m

d= 22.5 cm

d= 0.225 m

a)

lets time taken by electron is t

d = V x t

0.225 = 16,000 t

t=1.4\times 10^{-5}\ s

b)

We know that

F = m a = E q                    ------------1

Mass of electron ,m

m=9.1\times 10^{-31}\ kg

Charge on electron

q=1.6\times 10^{-19}\ C

So now by putting the values in equation 1

a=\dfrac{E q}{m}

a=\dfrac{1.6\times 10^{-19}\times 0.027}{9.1\times 10^{-31}}\ m/s^2

a=4.74\times 10^{9}\ m/s^2

S= ut+\dfrac{1}{2}at^2

Here initial velocity u= 0 m/s

S= \dfrac{1}{2}\times 4.74\times 10^{9}\times (1.4\times 10^{-5})^2\ m

S=0.464 m

S= 46.4 cm

S is the deflection of electron.

4 0
4 years ago
Read 2 more answers
A string along which waves can travel is 4.36 m long and has a mass of 222 g. The tension in the string is 60.0 N. What must be
lora16 [44]

Answer:

frequency is 195.467 Hz

Explanation:

given data

length L = 4.36 m

mass m = 222 g = 0.222 kg

tension T = 60 N

amplitude A = 6.43 mm = 6.43 × 10^{-3} m

power P = 54 W

to find out

frequency f

solution

first we find here density of string that is

density ( μ )= m/L ................1

μ = 0.222 / 4.36  

density μ is 0.050 kg/m

and speed of travelling wave

speed v = √(T/μ)       ...............2

speed v = √(60/0.050)

speed v = 34.64 m/s

and we find wavelength by power that is

power = μ×A²×ω²×v  /  2     ....................3

here ω is wavelength put value

54 = ( 0.050 ×(6.43 × 10^{-3})²×ω²× 34.64 )   /  2

0.050 ×(6.43 × 10^{-3})²×ω²× 34.64 = 108

ω² = 108 / 7.160  × 10^{-5}

ω = 1228.16 rad/s

so frequency will be

frequency = ω / 2π

frequency = 1228.16 / 2π

frequency is 195.467 Hz

7 0
4 years ago
How do Newton's laws of motion explain why it is important to keep the ice smooth on a hockey rink so that players can
lord [1]

Answer:

I'm not sure..but please refer to your teacher later.

Answer: Based on Newton's First law of motion (where inertia is involved), smooth ice increases the forceused to accelerate the hockey puck.

Explanation;

  • smooth ice reduces the resistances between the surface of the figure skates and the ice itself.
  • based on inertia theory ; the heavier the weight, the larger the inertia.. which explains it takes alot of force to move a heavier object than the lighter ones.. it also hard to *stop* the motion of heavier objects than the lighter ones.
  • now let's look at the design of the player shoe itself, they have a sharp blade at the bottom of the figure stakes.. which takes us to the law of the force.. the smaller the surface area, the more forces acting on it. So, players force (weight, F= mg) acts on the tip of the blade and on the ice
  • high inertia (run fast) and high force (attack opponent and pass puck) enables them to perform well in playing hockey
  • Thus if there's no resistance and the inertia of the player is high then they could run and pass the puck quickly
6 0
3 years ago
Read 2 more answers
Q 2 Two mirrors meet at right angles. A ray of light is incident on one at an angle of 30°
serg [7]

a ray of light is incident towards a plane mirror at an angles of 30degrees with the mirror surface. what will be the angles of reflection is 60degree.

3 0
3 years ago
Define the fundamental difference between kinematics and dynamics. .
Tcecarenko [31]

In kynematics you describe the motion of particles using vectors and their change in time. You define a position vector r for a particle, and then define velocity v and acceleration a as

v=\frac{dr}{dt} \\

a=\frac{dv}{dt}

In dynamics Newton's laws predict the acceleration for a given force. Knowing the acceleration, and the kynematical relations defines above, you can solve for the position as a function of time: r(t)

5 0
3 years ago
Other questions:
  • Severe weather often includes destructive events such as Hurricanes and Tornadoes where air is moving much faster than usual. Tr
    6·2 answers
  • A swinging pendulum has a total energy of <img src="https://tex.z-dn.net/?f=E_i" id="TexFormula1" title="E_i" alt="E_i" align="a
    13·1 answer
  • The phenomenon that State magnetic field affect electric field
    13·1 answer
  • Sunlight is reflected off of a puddle of water ahead of a driver. The index of refraction of the water is 1.333. If a driver sit
    7·1 answer
  • I want to take a picture of the question and get the answer
    15·1 answer
  • Imagine an isolated positive point charge Q (many times larger than the charge on a single proton). There is a charged particle
    11·1 answer
  • A neutral metal ball is suspended by a string. A positively charged insulating rod is placed near the ball, which is observed to
    10·1 answer
  • A factory worker pushes a 32.0 kg crate a distance of 7.0 m along a level floor at constant velocity by pushing horizontally on
    14·1 answer
  • (a) Calculate the height (in m) of a cliff if it takes 2.48 s for a rock to hit the ground when it is thrown straight up from th
    9·1 answer
  • a car initially at rest can accelerate at 7 m/s^2 how long will it take the car to reach 60 m/s and how far will it travel durin
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!