1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Minchanka [31]
3 years ago
13

What is the sum of the geometric sequence 1,-6,36... if there are 6 terms

Mathematics
1 answer:
zalisa [80]3 years ago
7 0
a_1=1;\ a_2=-6;\ a_3=36;\ ...\\\\r=a_2:a_1\to r=-6:1=-6\\\\S_n=\dfrac{a_1(1-r^n)}{1-r}\\\\a_1=1;\ r=-6;\ n=6\\\\subtitute\\\\S_6=\dfrac{1(1-(-6)^6)}{1-(-6)}=\dfrac{1-46656}{1+6}=\dfrac{46655}{7}=6665
You might be interested in
Karina pays $1.92 for pencil erasers. the erasers cost $0.08 each. how many erasers does she buy?
horrorfan [7]
1.92 / 0.08 = 24.....Karina bought 24 erasers
5 0
3 years ago
Look at the picture<br>​
Sonbull [250]

\large\displaystyle\text{$\begin{gathered}\sf 9|x-8| < 36 \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf Divide \ both \ sides \ by \ 9. \end{gathered}$}

  • \large\displaystyle\text{$\begin{gathered}\sf  \frac{9(|x-8|)}{9} < \frac{36}{9}   \end{gathered}$}
  • \large\displaystyle\text{$\begin{gathered}\sf |x-8| < 4 \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf Solve \ Absolute \ Value. \end{gathered}$}

  • \large\displaystyle\text{$\begin{gathered}\sf |x-8| < 4 \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf We \ know \ x-8 < 4 \ and \ x-8 > -4 \end{gathered}$}

<u>                                                                                                                             </u>

         \large\displaystyle\text{$\begin{gathered}\sf x-8 < 4 \ (Condition \ 1) \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf x-8+8 < 4+8 \ (Add \ 8 \ to \ both \ sides) \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf x < 12 \end{gathered}$}

<u>                                                                                                                             </u>

           \large\displaystyle\text{$\begin{gathered}\sf x-8 > -4 \ (Condition \ 2) \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf x-8+8 > -4+8 \ (Add \ 8 \ to \ both \ \ sides) \end{gathered}$}\\\large\displaystyle\text{$\begin{gathered}\sf x > 4 \end{gathered}$}

<u>                                                                                                                             </u>

<u />\underline{\boldsymbol{\sf{Answer}}}

\boxed{\large\displaystyle\text{$\begin{gathered}\sf x < 12 \ and \ x > 4 \end{gathered}$} }

\large\displaystyle\text{$\begin{gathered}\sf Therefore,\bf{\underline{the \  correct \ option}} \  \end{gathered}$}\large\displaystyle\text{$\begin{gathered}\sf is \ \bf{\underline{"A"}}. \end{gathered}$}

6 0
2 years ago
The roots of the equation x2 - 14x + 48 = 0) are
MrRissso [65]

Answer:

{x}^{2}  - 14x + 48 = 0 \\  {x}^{2}  - 6x -8 x + 48 = 0 \\ x(x - 6) - 8(x - 6) = 0 \\ (x - 6)(x - 8) = 0 \\ \boxed{ x = 6\: and \: 8}

  • 4) <em><u>6 and 8</u></em> is the right answer.
5 0
2 years ago
Identify whether the equation represents an exponential growth or exponential decay function.1. y = 1/4 (1/e)^-2x2. y = (1/e)^4x
zvonat [6]

The general formula for exponential growth and decays is:

y=y_0e^{kx}

if k>0 then then it is an exponential growth function. If k<0 then the function represents an exponential decay.

Now we need to classify each of the functions:

1.

The function

y=\frac{1}{4}(\frac{1}{e})^{-2x}

can be wrtten as:

\begin{gathered} y=\frac{1}{4}(e^{-1})^{-2x}^{} \\ =\frac{1}{4}e^{2x} \end{gathered}

comparing with the general formula we notice that k=2, therefore this is an exponential growth.

2.

The function

y=(\frac{1}{e})^{4x}

can be written as:

\begin{gathered} y=(\frac{1}{e})^{4x} \\ y=(e^{-1})^{4x} \\ y=e^{-4x} \end{gathered}

comparing with the general formula we notice that k=-4, therefore this is an exponential decay.

3.

The function

y=2e^{-x}+1

comparing with the general formula we notice that k=-1, therefore this is an exponential decay.

5 0
1 year ago
osiah invests $360 into an account that accrues 3% interest annually. Assuming no deposits or withdrawals are made, which equati
sammy [17]

The standard compound interest formula is

Future value after x years with an annual interest of i

=Present Value (1+i)^x [which is an exponential function]

for given present value of $360. interest=0.03 (3%) and a total of x years, above equation reduces to

Future value after x years

=360(1.03^x)


4 0
3 years ago
Other questions:
  • NEED HELP ASAP PLEASE I CANT FAIL
    14·2 answers
  • A group of point that lie on the same plane are called
    8·1 answer
  • I know that 8,000 ÷ 800 = 10 because the 8 in 8,000 represents __________
    6·1 answer
  • Find the value of a and b
    15·1 answer
  • Write an equation of the direct variation that includes the point (-10,-17)
    6·1 answer
  • The ratio of boys to girls in a class is 7:5. There are 36 students in the class. How many
    6·2 answers
  • PLEASE HELP ME 20 POINTS PLEASE
    6·2 answers
  • Could you help please i dont get it
    13·1 answer
  • The interior angles formed by the sides of a quadrilateral have measures that sum to 360°.
    15·1 answer
  • This wind would be called a
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!