Answer:
The horizontal component of the velocity is 188 m/s
The vertical component of the velocity is 50 m/s.
Explanation:
Hi there!
Please, see the figure for a graphic description of the problem. Notice that the x-component of the vector velocity (vx), the y-component (vy) and the vector velocity form a right triangle. Then, we can use trigonometry to obtain the magnitude of vx and vy:
We can find vx using the following trigonometric rule of a right triangle:
cos α = adjacent / hypotenuse
cos 15° = vx / 195 m/s
195 m/s · cos 15° = vx
vx = 188 m/s
The horizontal component of the velocity is 188 m/s
To calculate the y-component we will use the following trigonometric rule:
sin α = opposite / hypotenuse
sin 15° = vy / 195 m/s
195 m/s · sin 15° = vy
vy = 50 m/s
The vertical component of the velocity is 50 m/s.
Answer:
x = 1, y = 1 and z = 0
Explanation:
Given equation;

Boyle's law states that at constant temperature, the volume of a fixed mass of gas is inversely proportional to its pressure.
Mathematically the law is written as;

From the given equation, the values of x, y and z that will match this law is calculated as follows;

I learned the equation as P•V=k•T .
So x=1, y=1, and z= -1 .