The decrease in gravitational potential energy of the system is given by

where
m is the mass, g is the gravitational acceleration, and
is the variation of height of the system.
also corresponds to the weight of the diver, therefore if we rearrange the equation and we use
and
, we can find her weight:

The object is not accelerating
Answer:
kettles: holes left by glaciers.
cirques: three-sided valleys
erratics: large, out-of-place rocks bouldersleft by glaciers.
drumlins: egg-shaped hills
Explanation: APEX
Answer:
DveC başarılar yardı olduysam sevinirim
Answer:
<h2>Angular Displacement 6.28 radians</h2>
Explanation:
for circular motion we are expected to solve for Angular Displacement it is measured in radian
Measurement of Angular Displacement.
we can measure it using the following relation
∅= s/r
where
s = the distance travelled by the body, and
r = radius of the circle along which it is moving.
given that
circumference c, s= 400 m
r= ?
we have to solve for the radius
we know that circumference

400= 2*3.142*r
400= 6.282*r
divide both sides by 6.284 we have
400/6.284
r= 63.63 m
Angular displcament
∅= 400/63.63
∅= 6.28 radians