1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
3 years ago
7

An antacid tablet added to a glass of water fizzes and bubbles as it mixes.

Chemistry
2 answers:
Viefleur [7K]3 years ago
7 0
Answer b I think so sorry if not is
pickupchik [31]3 years ago
6 0

Answer:

B is wrong

Explanation:

I took a test just now and got it wrong

You might be interested in
Some areas of the Earth receive more solar radiation than others. Which of the following results from the Sun's uneven heating o
STatiana [176]

<em><u>Some areas of the Earth receive more solar radiation than others and this Sun’s uneven heating of the Earth result in  </u></em>

i. <em><u>Climate </u></em>

ii. <em><u>Weather </u></em>

iii. <em><u>Ocean currents </u></em>

Further Explanations:

Earth receives varied amount of solar radiation in its different parts. The situation is due to the orbicular shape of the Earth and inclination of the sun during different time of the year. We can see one such example that, during June sun is overheard Tropic of cancer and during September it is overhead Tropic of Capricorn. Because of the inclination,different regions of the Earth experience different climate at the same span of time. This unevenness results in the following phenomenon:

i. Climate:Climate is a continuing average weather condition of a place. Some of the climatological variables commonly measured to determine the climate   temperature, moistness, atmospheric pressure, current of air, and precipitation.

ii. Weather: It is defined as the state of atmosphere, describing the degree of heat or coldness, wetness or aridness, calm or stormy. It also refers to daily temperature and rainfall activities.

iii. Ocean Current: It is more or less perpetual or continuous engaged movement of oceanic water flowing on the Earth’s oceans. The current gets created as the resultant of geological forces acting on the oceanic surface.

Learn More

  1. What layers of earth make up the lithosphere answers Details?<u>brainly.com/question/1593688 </u>
  2. What resource can best help you learn about the terrain in a particular area before you arrive? <u>brainly.com/question/2533802 </u>
  3. Which of the following is not true about sedimentary rocks? a. they are formed through compaction and cementation. c. they occur from igneous rock fragments. b. they are made up of sediments. d. they are not part of the rock cycle? <u>brainly.com/question/2740663 </u>

Answer Details :

Grade: High School

Subject: Geography

Chapter: Climate

Keywords:

Earth, solar radiation, orbicular shape, June, sun, Tropic of cancer, Tropic of Capricorn,Climate,climatological variables, climate   temperature, moistness, atmospheric pressure, current of air, and precipitation, daily temperature ,rainfall activities

4 0
3 years ago
Read 2 more answers
In the Bohr model of the atom, an electron in an orbit has a fixed energy level and to move between orbitals what needs to absor
soldier1979 [14.2K]
The answer is heat hope i helped

3 0
3 years ago
Calculate the empirical formula for each stimulant based on its elemental mass percent composition. a. nicotine (found in tobacc
Ira Lisetskai [31]

This an incomplete question, here is a complete question.

Calculate the empirical formula for each stimulant based on its elemental mass percent composition.

a. nicotine (found in tobacco leaves): C 74.03%, H 8.70%, N 17.27%

b. caffeine (found in coffee beans): C 49.48%, H 5.19 %, N 28.85% and O 16.48%

Answer:

(a) The empirical formula for the given compound is C_5H_7N

(b) The empirical formula for the given compound is C_4H_5N_2O

Explanation:

<u>Part A: nicotine </u>

We are given:

Percentage of C = 74.03 %

Percentage of H = 8.70 %

Percentage of N = 17.27 %

Let the mass of compound be 100 g. So, percentages given are taken as mass.

Mass of C = 74.03 g

Mass of H = 8.70 g

Mass of N = 17.27 g

To formulate the empirical formula, we need to follow some steps:

Step 1: Converting the given masses into moles.

Moles of Carbon =\frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{74.03g}{12g/mole}=6.17moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{8.70g}{1g/mole}=8.70moles

Moles of Nitrogen = \frac{\text{Given mass of nitrogen}}{\text{Molar mass of nitrogen}}=\frac{17.27g}{14g/mole}=1.23moles

Step 2: Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 1.23 moles.

For Carbon = \frac{6.17}{1.23}=5.01\approx 5

For Hydrogen  = \frac{8.70}{1.23}=7.07\approx 7

For Nitrogen = \frac{1.23}{1.23}=1

Step 3: Taking the mole ratio as their subscripts.

The ratio of C : H : N = 5 : 7 : 1

The empirical formula for the given compound is C_5H_7N_1=C_5H_7N

<u>Part B: caffeine</u>

We are given:

Percentage of C = 49.48 %

Percentage of H = 5.19 %

Percentage of N = 28.85 %

Percentage of O = 16.48 %

Let the mass of compound be 100 g. So, percentages given are taken as mass.

Mass of C = 49.48 g

Mass of H = 5.19 g

Mass of N = 28.85 g

Mass of O = 16.48 g

To formulate the empirical formula, we need to follow some steps:

Step 1: Converting the given masses into moles.

Moles of Carbon = \frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{49.48g}{12g/mole}=4.12moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{5.19g}{1g/mole}=5.19moles

Moles of Nitrogen = \frac{\text{Given mass of nitrogen}}{\text{Molar mass of nitrogen}}=\frac{28.85g}{14g/mole}=2.06moles

Moles of Oxygen = \frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{16.48g}{16g/mole}=1.03moles

Step 2: Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 1.03 moles.

For Carbon = \frac{4.12}{1.03}=4

For Hydrogen  = \frac{5.19}{1.03}=5.03\approx 5

For Nitrogen = \frac{2.06}{1.03}=2

For Nitrogen = \frac{1.03}{1.03}=1

Step 3: Taking the mole ratio as their subscripts.

The ratio of C : H : N : O = 4 : 5 : 2 : 1

The empirical formula for the given compound is C_4H_5N_2O_1=C_4H_5N_2O

6 0
3 years ago
A 20.0 mL 0.100 M solution of lactic acid is titrated with 0.100 M NaOH.
yan [13]

Answer:

(a) See explanation below

(b) 0.002 mol

(c) (i) pH = 2.4

(ii) pH = 3.4

(iii) pH = 3.9

(iv) pH = 8.3

(v) pH = 12.0

Explanation:

(a) A buffer solution exits after addition of 5 mL of NaOH  since after reaction we will have  both the conjugate base lactate anion and unreacted weak  lactic acid present in solution.

Lets call lactic acid HA, and A⁻ the lactate conjugate base. The reaction is:

HA + NaOH ⇒ A⁻ + H₂O

Some unreacted HA will remain in solution, and since HA is a weak acid , we will have the followin equilibrium:

HA  + H₂O ⇆ H₃O⁺ + A⁻

Since we are going to have unreacted acid, and some conjugate base, the buffer has the capacity of maintaining the pH in a narrow range if we add acid or base within certain limits.

An added acid will be consumed by the conjugate base A⁻ , thus keeping the pH more or less equal:

A⁻ + H⁺ ⇄ HA

On the contrary, if we add extra base it will be consumed by the unreacted lactic acid, again maintaining the pH more or less constant.

H₃O⁺ + B ⇆ BH⁺

b) Again letting HA stand for lactic acid:

mol HA =  (20.0 mL x  1 L/1000 mL) x 0.100 mol/L = 0.002 mol

c)

i) After 0.00 mL of NaOH have been added

In this case we just have to determine the pH of a weak acid, and we know for a monopric acid:

pH = - log [H₃O⁺] where  [H₃O⁺] = √( Ka [HA])

Ka for lactic acid = 1.4 x 10⁻⁴  ( from reference tables)

[H₃O⁺] = √( Ka [HA]) = √(1.4 x 10⁻⁴ x 0.100) = 3.7 x 10⁻³

pH = - log(3.7 x 10⁻³) = 2.4

ii) After 5.00 mL of NaOH have been added ( 5x 10⁻³ L x 0.1 = 0.005 mol NaOH)

Now we have a buffer solution and must use the Henderson-Hasselbach equation.

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.0005                0

after rxn    0.002-0.0005                  0                  0.0005

                        0.0015

Using Henderson-Hasselbach equation :

pH = pKa + log [A⁻]/[HA]

pKa HA = -log (1.4 x 10⁻⁴) = 3.85

pH = 3.85 + log(0.0005/0.0015)

pH = 3.4

iii) After 10.0 mL of NaOH have been ( 0.010 L x 0.1 mol/L = 0.001 mol)

                             HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.001               0

after rxn        0.002-0.001                  0                  0.001

                        0.001

pH = 3.85 + log(0.001/0.001)  = 3.85

iv) After 20.0 mL of NaOH have been added ( 0.002 mol )

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.002                 0

after rxn                 0                         0                   0.002

We are at the neutralization point and  we do not have a buffer anymore, instead we just have  a weak base A⁻ to which we can determine its pOH as follows:

pOH = √Kb x [A⁻]

We need to determine the concentration of the weak base which is the mol per volume in liters.

At this stage of the titration we added 20 mL of lactic acid and 20 mL of NaOH, hence the volume of solution is 40 mL (0.04 L).

The molarity of A⁻ is then

[A⁻] = 0.002 mol / 0.04 L = 0.05 M

Kb is equal to

Ka x Kb = Kw ⇒ Kb = 10⁻¹⁴/ 1.4 x 10⁻⁴ = 7.1 x 10⁻¹¹

pOH is then:

[OH⁻] = √Kb x [A⁻]  = √( 7.1 x 10⁻¹¹ x 0.05) = 1.88 x 10⁻⁶

pOH = - log (  1.88 x 10⁻⁶ ) = 5.7

pH = 14 - pOH = 14 - 5.7 = 8.3

v) After 25.0 mL of NaOH have been added (

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn           0.002                  0.0025              0

after rxn                0                         0.0005              0.0005

Now here what we have is  the strong base sodium hydroxide and A⁻ but the strong base NaOH will predominate and drive the pH over the weak base A⁻.

So we treat this part as the determination of the pH of a strong base.

V= (20 mL + 25 mL) x 1 L /1000 mL = 0.045 L

[OH⁻] = 0.0005 mol / 0.045 L = 0.011 M

pOH = - log (0.011) = 2

pH = 14 - 1.95 = 12

7 0
2 years ago
What would be the correct order of least(floats) to most(sinks) density?*
olya-2409 [2.1K]

Answer:

B

Explanation:

Water-Continental-Oceanic-Mantle

5 0
2 years ago
Other questions:
  • How hot, in degrees Celsius, would the air inside the balloon have to get in order for the balloon to lift off the ground? Assum
    5·1 answer
  • Determine the number of molecules present in 4.56 moles of nitrogen (n2).
    8·1 answer
  • Which family (group) of elements rarely forms chemical bonds with other elements?
    15·1 answer
  • Explain the electrolysis of an aqueous solution. (What is produced at each electrode and why its produced) Thank you ​
    13·1 answer
  • Pls help me it detects if it’s right or wrong
    13·1 answer
  • Someone pls help me ::/:/
    12·1 answer
  • What is the compound name of FeBrO3?
    15·1 answer
  • A medium that works by showing two reaction types, such as a color change in some colonies but not in others is called a(n)
    6·1 answer
  • Shaila is collecting data to calculate the density of a piece of wood. First, she
    5·1 answer
  • A radioactive substance has a half-life of 5 million years. What is the age of a rock in which 25% of the original radioactive a
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!