Answer:
Motors are the most common application of magnetic force on current-carrying wires. Motors have loops of wire in a magnetic field. When current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a shaft. Electrical energy is converted to mechanical work in the process
Explanation:
hope that helps!
The correct response is D. This is because light is reflected of the building onto the water that is hitting the building.
The work done to pull the object 7.0 m is the total area under the graph from 0.0 m to 7.0 m, determined as 245 J.
<h3>Work done by the applied force</h3>
The area under force versus displacement graph is work done.
The total work done by pulling the object 7 m, can be grouped into two areas;
- First area, A1 = area of triangle from 0 m to 2.0 m
- Second area, A2 = area of trapezium, from 2.0 m to 7.0 m
A1 = ¹/₂ bh
A1 = ¹/₂ x (2) x (20)
A1 = 20 J
A2 = ¹/₂(large base + small base) x height
A2 = ¹/₂[(7 - 2) + (7-3)] x 50
A2 = ¹/₂(5 + 4) x 50
A2 = 225 J
<h3>Total work done </h3>
W = A1 + A2
W = 20 J + 225 J
W = 245 J
Learn more about work done here: brainly.com/question/8119756
Convert the given in SI units.
(44 ft/sec)(1 m/ 3.28 ft) = 13.41 m/sec
The distance traveled and the initial velocity can be related through the equation,
d = (Vf)² - (Vi)²/ 2a
where d is the distance, Vf is the final velocity, Vi is the initial velocity, a is the acceleration due to gravity. Substituting the known values from the given above,
d = ((0 m/s)² - (13.41 m/s)²)/ 2(-9.8 m/s²)
The value of d from the equation,
d = 9.17 meters
Convert this to feet,
d = (9.17 m)(3.28 ft / 1 m) = 30 ft
Answer: 30 ft