Charging a balloon and rubbing it on wool is an example of static electricity.
:)
Answer:
r = 0.05 m = 5 cm
Explanation:
Applying ampere's law to the wire, we get:

where,
r = distance of point P from wire = ?
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
I = current = 2 A
B = Magnetic Field = 8 μT = 8 x 10⁻⁶ T
Therefore,

<u>r = 0.05 m = 5 cm</u>
According to law of conservation of energy,
<span>Energy can neither be constructed nor be destroyed but can be transformed from one form to another.
</span>
<span>At the highest point of the pendulum(point b), pendulum is associated with potential energy only and no kinetic energy.
</span><span>Therefore total energy at point b = potential energy = 711 J.... i
</span>
<span>At the bottom most point(point a), pendulum is associated only with kinetic energy and no potential energy.
</span>Therefore total energy at point a = kinetic energy ---- ii
<span>From i and ii,
</span>Kinetic energy = potential energy = 711 J.(Conserving energy)
Hence kinetic energy at the bottom most point is 711 J.
Hope this helps!!
Answer:
Fnet = F√2
Fnet = kq²/r² √2
Explanation:
A exerts a force F on B, and C exerts an equal force F on B perpendicular to that. The net force can be found with Pythagorean theorem:
Fnet = √(F² + F²)
Fnet = F√2
The force between two charges particles is:
F = k q₁ q₂ / r²
where
k is Coulomb's constant, q₁ and q₂ are the charges, and r is the distance between the charges.
If we say the charge of each particle is q, then:
F = kq²/r²
Substituting:
Fnet = kq²/r² √2
Answer:
leaf and a balloon is the correct answer