Answer:
24°
Explanation:
sin(34°)/sin(x)=v2/v1
x=arcsin(2,1*sin(34°)/2,8)=24°
Answer:
Correct answer letter b.
Explanation:
When the book is on the top shelf of the bookcase, it just only gravitational potential energy, due to the gravitational field and the kinetic energy at this point is zero because the book is at rest.
Now, when the book starts falling, all the potential energy will transform into the kinetic energy. It happens, thanks to the conservation of the energy,that says energy can neither be created nor destroyed, energy can only be transferred or changed from one form to another.
Let's recall that the gravitational potential energy depends on the object's position, so when the book falls, the magnitude of the position decreases and the speed of this object increases.
Therefore, the potential energy of the book decreases as kinetic energy increases.
Correct answer letter b.
I hope it helps you!
Answer:
The centripetal acceleration changed by a factor of 0.5
Explanation:
Given;
first radius of the horizontal circle, r₁ = 500 m
speed of the airplane, v = 150 m/s
second radius of the airplane, r₂ = 1000 m
Centripetal acceleration is given as;

At constant speed, we will have;

a₂ = 0.5a₁
Therefore, the centripetal acceleration changed by a factor of 0.5
Answer:
a. L = μ₀AN²/l b. 1.11 × 10⁻⁷ H
Explanation:
a. The magnetic flux through the solenoid, Ф = NAB where N = number of turns of solenoid, A = cross-sectional area of solenoid and B = magnetic field at center of solenoid = μ₀ni where μ₀ = permeability of free space, n = number of turns per unit length = N/l where l = length of solenoid and i = current in solenoid.
Also, Li = Ф where L = inductance of solenoid.
So, Li = NAB
= NA(μ₀ni)
= NA(μ₀Ni/l)
Li = μ₀AN²i/l
dividing both sides by i, we have
So, L = μ₀AN²/l
b. The self- inductance, L = μ₀AN²/l where
A = πd²/4 where d = diameter of solenoid = 0.150 cm = 1.5 × 10⁻³ m, N = 50 turns, μ₀ = 4π × 10⁻⁷ H/m and l = 5.00 cm = 5 × 10⁻² m
So, L = μ₀AN²/l
L = μ₀πd²N²/4l
L = 4π × 10⁻⁷ H/m × π(1.5 × 10⁻³ m)²(50)²/(4 × 5 × 10⁻² m)
L = 11,103.3 × 10⁻¹¹ H
L = 1.11033 × 10⁻⁷ H
L ≅ 1.11 × 10⁻⁷ H
Answer:
P₁ = 2.215 10⁷ Pa, F₁ = 4.3 106 N,
Explanation:
This problem of fluid mechanics let's start with the continuity equation to find the speed of water output
Q = A v
v = Q / A
The area of a circle is
A = π r² = π d² / 4
Let's look at the speeds at each point
v₁ = Q / A₁ = Q 4 /π d₁²
v₁ = 10 4 /π 0.5²
v₁ = 50.93 m / s
v₂ = Q / A₂
v₂ = 10 4 /π 0.25²
v₂ = 203.72 m / s
Now we can use Bernoulli's equation in the colon
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Since the tube is horizontal y₁ = y₂. The output pressure is P₂ = Patm = 1.013 10⁵ Pa, let's clear
P₁ = P2 + ½ rho (v₂² - v₁²)
P₁ = 1.013 10⁵ + ½ 1000 (203.72² - 50.93²)
P₁ = 1.013 10⁵ + 2.205 10⁷
P₁ = 2.215 10⁷ Pa
la definicion de presion es
P₁ = F₁/A₁
F₁ = P₁ A₁
F₁ = 2.215 10⁷ pi d₁²/4
F₁ = 2.215 10⁷ pi 0.5²/4
F₁ = 4.3 106 N