1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Free_Kalibri [48]
3 years ago
7

A ball with a mass of 275 g is dropped from rest, hits the floor and rebounds upward. If the ball hits the floor with a speed of

3.30 m/s and rebounds with a speed of 1.60 m/s, determine the following. (a) magnitude of the change in the ball's momentum in kg · m/s (Let up be in the positive direction.)
Physics
1 answer:
pochemuha3 years ago
8 0

Answer:

\Delta p=1.3475\ kg-m/s

Explanation:

The computation of magnitude of the change in the ball's momentum in kg · m/s is shown below:-

We represent

The ball mass =  m = 275 g = 0.275 kg

Thus it goes to the floor and resurfaces upward.

The ball hits the ground at 3.30 m/s speed that is

u = -3.30 m/s which represents the Negative since the ball hits the ground)

It rebounds at a speed of 1.60 m / s i.e. v = 1.60 m/s (positive as the ball rebounds upstream)

\Delta p=p_f-p_i

\Delta p=m(v-u)

\Delta p=0.275\ kg(1.60\ m/s-(-3.30\ m/s))

\Delta p=1.3475\ kg-m/s

You might be interested in
a car accelerates uniformly from rest to a speed of 51.9mi/h in 9.37s. find the constant acceleration of the car. answer in unit
Darina [25.2K]
Here is my step-by-step-work. Let me know if you have any questions! :)

3 0
2 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
A fisherman is fishing from a bridge and is using a "44.0-N test line." In other words, the line will sustain a maximum force of
vitfil [10]

Answer:

a) 4.485 kg b) 3.94 kg

Explanation:

since the maximum tension the line can stand is 44 N and for question a the speed is constant (acceleration must be zero since the velocity or speed is not changing), F(tension) = mass * acceleration due to gravity (g) .

44 = m * 9.81m/s^2

m = 44/9.81 = 4.485kg

b) F(tension) = ma + mg ( where a is the acceleration of the body and g is the acceleration of the gravity)

44 = m (a +g)

44 = m (1.37 + 9.81)

44/11.18 = m

m = 3.94 kg

3 0
3 years ago
The Olympic record for a marathon is 2.00 hour 9.00 minute 21.0 seconds if the average speed of the runner achieving this record
iren2701 [21]
(2.00 hours) x (3,600 seconds/hour)  =  7,200 seconds

(9.00 minutes) x (60 seconds/minute)  =  540 seconds

The record time = (7,200 + 540 + 21) = 7,761 seconds

Distance  =  (speed) x (time)

                 = (5.436 m/s) x (7,761 sec)  =<span>  42,188.8 meters
________________________________________________
</span>
The official length of the marathon run is  42,195 meters.
If we divide that by the record time in the question, we get

                       5.4368... m/s .

Rounded to the nearest thousandth, that's  5.437 m/s.

If the question had given the speed as  5.437  instead of  5.436 ,
then we would have calculated the distance to be 

            (5.437 m/s) x (7,761 sec)  =<span>  42,196.6 meters,

4.6 meters closer to the official distance than the answer we did get.
</span>
3 0
2 years ago
if a cyclist is travelling a road due east at 12km/h and a wind is blowing from south-west at 5km/h. find the velocity of the wi
slamgirl [31]

Answer:

The velocity of wind with respect to cyclist is -15.5 \widehat{i} - 3.5 \widehat{j}.

Explanation:

speed of cyclist = 12 km/h east

speed of wind = 5 km/h south west

Write the speeds in the vector form

\overrightarrow{vc} = 12 \widehat{i}\\\\overrightarrow{vw} = - 5 (cos 45 \widehat{i} + sin 45 \widehat{j})\\\\\overrightarrow{vw} =-3.5 \widehat{i} - 3.5 \widehat{j}

The velocity of wind with respect to cyclist is

\overrightarrow{vw} =-3.5 \widehat{i} - 3.5 \widehat{j}\overrightarrow{v_(w/c)} = \overrightarrow{vw}-\overrightarrow{vc}\\\\\overrightarrow{v_(w/c)} = - 3.5 \widehat{i} - 3.5 \widehat{j}  - 12 \widehat{i}\\\\\overrightarrow{v_(w/c)} =-15.5 \widehat{i} - 3.5 \widehat{j}

7 0
2 years ago
Other questions:
  • Two airplanes leave an airport at the same time. The velocity of the first airplane is 750 m/h at a heading of 51.3°. The veloci
    14·2 answers
  • After a package is dropped from the plane, how long will it take for it to reach sea level from the time it is dropped? assume t
    14·1 answer
  • If we decrease the amount of force applied to an object, and all other factors remain the same, the amount of work completed wil
    5·2 answers
  • An insulator can do which of the following? Conduct charge through it. Become positively or negatively charged. Transfer protons
    7·1 answer
  • A geological process Select one: A. is limited to acting on rocks B. shapes and changes the earth C. starts in the outer atmosph
    8·1 answer
  • Find the period of the leg of a man who is 1.83 m in height with a mass of 67 kg. The moment of inertia of a cylinder rotating a
    5·1 answer
  • Describe what happens to the gravitational force when the Sun, Earth and Moon<br> are in a line.
    12·1 answer
  • 2) A car travels 5 miles north, and then 10 miles south. What is the person's DISTANCE and
    8·1 answer
  • I need the answers to these questions if u dont mind
    6·1 answer
  • fins the powee of a convex lens which forms a real and inverted image of magnification -1 of an object placed at a distance from
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!