Answer:
Explained
Explanation:
Newton would resort to the classical mechanics and say that the momentum of the particle that is moving with a constant velocity will be given by: momentum = mass x velocity
this approach will highlight the particle nature and will not be relativistic.
De-Broglie will say that the momentum of the particle is related to its associated matter wave and the relation between them is given by:

where \lambda = wavelength of the matter wave associated to the particle, h = planck's constant
and
thus, this highlights the wave nature of the particle and is also relativistic.
Answer:
The minimum speed when she leave the ground is 6.10 m/s.
Explanation:
Given that,
Horizontal velocity = 1.4 m/s
Height = 1.8 m
We need to calculate the minimum speed must she leave the ground
Using conservation of energy



Put the value into the formula




Hence, The minimum speed when she leave the ground is 6.10 m/s.
The legend is that he discovered gravity when an apple feel on his head. I don’t know what the true story is, but that’s what I’ve heard so maybe A??
Although, I’m pretty sure it could also be C
So... between A and C, however, I don’t want you to get it wrong so I would recommend getting another opinion
Hope this helps!
Answer:
706.68 N
Explanation:
By Hooke's law,


Using the values in the question,

When e = 0.4 m,

Answer:
The sum of the initial and final velocity is divided by 2 to find the average. The average velocity calculator uses the formula that shows the average velocity (v) equals the sum of the final velocity (v) and the initial velocity (u), divided by 2.