1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreev551 [17]
3 years ago
9

Friction provides the force needed for a car to travel around a flat, circular race track. What is the maximum speed at which a

car can safely travel if the radius of the track is 79.0 m and the coefficient of friction is 0.39?
Physics
1 answer:
ad-work [718]3 years ago
6 0

Answer:

Maximum speed of the car is 17.37 m/s.

Explanation:

Given that,

Radius of the circular track, r = 79 m

The coefficient of friction, \mu=0.39

To find,

The maximum speed of car.

Solution,

Let v is the maximum speed of the car at which it can safely travel. It can be calculated by balancing the centripetal force and the gravitational force acting on it as :

v=\sqrt{\mu rg}

v=\sqrt{0.39\times 79\times 9.8}

v = 17.37 m/s

So, the maximum speed of the car is 17.37 m/s.

You might be interested in
Silver has a mass of 10.5 grams and a volume of 19.3 cm3. What is its density?
Neko [114]

Answer:

<h3>The answer is 0.54 g/cm³</h3>

Explanation:

The density of a substance can be found by using the formula

density =  \frac{mass}{volume}  \\

From the question we have

density =  \frac{10.5}{19.3}  \\  = 0.54404145...

We have the final answer as

<h3>0.54 g/cm³</h3>

Hope this helps you

7 0
3 years ago
In general, what do you think are the benefits if you already achieve your body goals.​
balandron [24]

Answer:

exercise dailyyy

Help you control your weight. ...

Reduce your risk of heart diseases. ...

Help your body manage blood sugar and insulin levels. ...

Help you quit smoking. ...

Improve your mental health and mood. ...

Help keep your thinking, learning, and judgment skills sharp as you age.

Explanation:

7 0
3 years ago
So far, you’ve been working with an "ideal" pulley system. How do you think real pulley systems are different, and how would tha
almond37 [142]

Answer:

In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component

However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy

Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system

The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Efficiency \, \% = \dfrac{AMA}{IMA}  \times 100

Explanation:

8 0
3 years ago
When a gun is fired at the shooting range, the gun recoils (moves backward). Explain this using the law of conservation of momen
12345 [234]
The total momentum is unchanged according to the law of conservation of momentum. When the gun is fired, the bullet gains a high velocity forward (positive velocity), and that velocity multiplied by its mass is the momentum the bullet gains. Therefore, the gun must gain a momentum backwards to cancel out that momentum forward, so the gun recoils back with a negative velocity.
4 0
3 years ago
An automobile tire having a temperature of
EastWind [94]

Answer:

Psm = 30.66 [Psig]

Explanation:

To solve this problem we will use the ideal gas equation, recall that the ideal gas state equation is always worked with absolute values.

P * v = R * T

where:

P = pressure [Pa]

v = specific volume [m^3/kg]

R = gas constant for air = 0.287 [kJ/kg*K]

T = temperature [K]

<u>For the initial state</u>

<u />

P1 = 24 [Psi] + 14.7 = 165.47[kPa] + 101.325 = 266.8 [kPa] (absolute pressure)

T1 = -2.6 [°C] = - 2.6 + 273 = 270.4 [K] (absolute Temperature)

Therefore we can calculate the specific volume:

v1 = R*T1 / P1

v1 = (0.287 * 270.4) / 266.8

v1 = 0.29 [m^3/kg]

As there are no leaks, the mass and volume are conserved, so the volume in the initial state is equal to the volume in the final state.

V2 = 0.29 [m^3/kg], with this volume and the new temperature, we can calculate the new pressure.

T2 = 43 + 273 = 316 [K]

P2 = R*T2 / V2

P2 = (0.287 * 316) / 0.29

P2 = 312.73 [kPa]

Now calculating the manometric pressure

Psm = 312.73 -101.325 = 211.4 [kPa]

And converting this value to Psig

Psm = 30.66 [Psig]

3 0
3 years ago
Other questions:
  • On the other side of the gorge, at the highest point of his swing, the vine makes an angle of \theta=40^\circθ=40 ​∘ ​​ from the
    5·1 answer
  • Urgent! please help!
    7·1 answer
  • Kalyan ramji sain, of india, had a mustache that measured 3.39 m from end to end in 1993. suppose two charges, q and 3q, are pla
    12·1 answer
  • Helppppppp pleassseeee!!!!!!
    9·1 answer
  • The number of protons in an atom is that element’s __________________ number.<br> PLEASE HELP
    14·1 answer
  • What happened 1 billion years after the Big Bang?
    15·1 answer
  • What is the average velocity of a rocket that travels 15 m in 0.25 seconds?​
    9·1 answer
  • What is the life cycle of a eukaryotic cell called?
    15·1 answer
  • Part C How might someone dispute the results of your investigation? How might you counter the argument?​
    5·2 answers
  • 5. Find the velocity of a train that traveled 75 km in 35 minutes. (answer
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!