Answer:
that best describes the process is C
Explanation:
This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.
Heat absorbed by the smallest container
Q_c = m ce (-T₀)
Heat released by the largest container is
Q_a = M ce (T_{i}-T_{f})
how
Q_c = Q_a
m (T_{f}-T₀) = M (T_{i} - T_{f})
Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.
Of the final statements, the one that best describes the process is C
since it talks about the thermal energy and the heat that is transferred in the process
To solve the problem it is necessary to apply the Malus Law. Malus's law indicates that the intensity of a linearly polarized beam of light, which passes through a perfect analyzer with a vertical optical axis is equivalent to:
Where,
indicates the intensity of the light before passing through the polarizer,
I is the resulting intensity, and
indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
Since we have two objects the law would be,
Replacing the values,
Therefore the intesity of the light after it has passes through both polarizers is
Answer and Explanation:
Polar molecules are formed as a result of unequal sharing of electrons by the atoms in the molecule which creates polarization like that in water molecule.
If the electrons are shared equally by the atoms in the molecule then there won't be any polarization of the molecule and the molecule is non polar.
Electro-negativity is that property of an atom which lets it attract negative charges, i.e., electrons. The more the electro-negativity of an atom in the molecule the more are the chances of its polarization.
I'd answer that but I can't text graphs and tables...
Answer: Examples of conductors include metals, aqueous solutions of salts (i.e., ionic compounds dissolved in water), graphite, and the human body. Examples of insulators include plastics, Styrofoam, paper, rubber, glass and dry air.