Answer:
Alpha particles Ichargeq q = + 2e mass m=6.8*10^ -27 kg) at 17*10^ 4 m/s What magnetic field strength would be required to bend them into a circular path of radiuse c = 0.25m
Explanation:
Alpha particles Ichargeq q = + 2e mass m=6.8*10^ -27 kg) at 17*10^ 4 m/s What magnetic field strength would be required to bend them into a circular path of radiuse c = 0.25m ok
Answer:
F=1.4384×10⁻¹⁹N
Explanation:
Given Data
Charge q= -8.00×10⁻¹⁷C
Distance r=2.00 cm=0.02 m
To find
Electrostatic force
Solution
The electrostatic force between between them can be calculated from Coulombs law as

Substitute the given values we get

Data:
The charge of a body depends on the amount of electrons it gains or loses. Q = n * e, where "Q" is charge, "n" is the number of plus or minus electrons, and "e" is the fundamental charge of an electron

<span>. To know if the body has gained or lost, we look at the signal of its charge, remembering that the electron is negative. The charge of the body is 4 μC (positive), so there is a lack of electrons!
Q = 4 </span>μC →



<span>
We have:
</span>





Answer:
Connect multiple hosts: Normally, a switch provides a large number of ports for cable connections, allowing for star topology routing. It is usually used to connect multiple PCs to the network.
Forwards a message to a specific host: Like a bridge, a switch uses the same forwarding or filtering logic on each port. When any host on the network or a switch sends a message to another host on the same network or the same switch, the switch receives and decodes the frames to read the physical (MAC) address portion of the message.
Manage traffic: A switch in networking can manage traffic either coming into or exiting the network and can connect devices like computers and access points with ease.
Keep electrical signal undistorted: When a switch forwards a frame, it regenerates an undistorted square electrical signal.
Increase LAN bandwidth: A switch divides a LAN into multiple collision domains with independent broadband, thus greatly increasing the bandwidth of the LAN.
Explanation: