Answer:
d. This statement is false. She and the Space Station share the same orbit and will stay together unless they are pushed apart.
Explanation:
In astronomy, orbit is simply a path of an object around another object in a space. That is, orbit is a path of a body that revolves around a gravitating center of mass. Examples of an orbit is are satellite around a planet, orbit around a center of galaxy, planet around the sun, and among others.
On the other hand, space station refers to a spacecraft that can support a group of human for long time in the orbit. Another names for space stations are orbital space station and orbital station.
Therefore, an astronaut goes on a space walk outside the Space Station shares the same orbit with the space station and they will stay together unless they are pushed apart.
you can find it using the equation: potential energy=mass*gravitational acceleration*height.
energy=50kg*9.8N/kg*40m=19600Nm=19600J or 19.6kJ
Sometimes they use 10 instead of 9.8 for the g constant.
Rember to make me Brainliest!!!
Answer:
D
Explanation:
because it is the only one that has something to do with heat keyword would be boiling
Answer:
mas of water displaced = 41.4 g
Explanation:
Weight in air = True weight = 45 g
Apparent weight = 3.6 g
Apparent weight = True weight - Buoyant force
Buoyant force = 45 g - 3.6 g = 41.4 g
Weight of water displaced = Buoyant force
Weight of water displaced = 41.4 g dyne
mas of water displaced = 41.4 g
Answer:
- 210 rad/s²
Explanation:
n = frequency of rotation = 3400/60 = 170/3 per sec.
angular velocity ω ( 0 ) at time 0 = 2π n = 2π x 170/3
angular velocity at time t = ω(t) = 0
now, ω²( t) = w²(o) + 2α Φ ( α = angular acceleration and Φ = angular displacement) = 2π x 48 rad.
0 = ( 2π x 170/3 )² + 2α x 48 x 2π
α = - (2π x 170 x 170 )/ (3 x 3 x 2 x 48 ) = 210 rad / s²