Answer:

Explanation:
When top block is just or about to slide on the lower block then we can say that the frictional force on it will be maximum static friction
So we will have






now for the Net force on two blocks to move together



The direction of electric field by the charge in and on the metal block will be along the direction line 5 as given in question.
<h3>
How to determine electric field direction in a metal block?</h3>
The charge always remain on outer surface of metal and inside the metal block, the net electric field is zero. But due to dipole there is an electric field at the center of metal block i.e. at point R along direction line 1.
Now, to make make the net electric field zero at center, the electric field by the charge in and on the metal block must be equal in magnitude to that of electric field due to dipole at point R and in opposite direction to that of the net electric field at at R due to dipole.
The electric field by the charge in and on the metal block will be making 180° angle to the electric field due to dipole at point R.
Hence the direction of electric field by the charge in and on the metal block will be along the direction line 5 as given in question.
To know more about electric field, click on brainly.com/question/11509296
#SPJ4
Answer:
The elevator must be moving upward.
Explanation:
During the motion of an elevator, the weight of the person deviates from his or her actual weight. This temporary weight during the motion is referred to as "Apparent Weight". So, when the elevator is moving downward, the apparent weight of the person becomes less than his or her actual weight.
On the other hand, for the upward motion of the elevator, the apparent weight of the person becomes more than the actual weight of that person.
Since the apparent weight (645 N) of the student, in this case, is greater than the actual weight (615 N) of the student.
<u>Therefore, the elevator must be moving upward.</u>
<span>The
answer is X-rays.<span> </span>Chandra observes the universe
in X-ray vision. The observatory has helped astronomers discover black holes,
dark matter, quasars, and supernovas and see beyond regions in the universe past
that have high temperatures and very high
luminosity. It has allowed us to see the
universe beyond our visual capacity (visible light of the electromagnetic spectrum).
</span>
Answer:
if you need to ask this question, then u dont love them
Explanation:
give them ur whole heart and always wanna cuddle
plza mark me brainliest i need only one moreeeeee