You can cross multiply, it will be easy

- <em>Expansion </em><em>of </em><em>particles</em><em> </em><em>of</em><em> </em><em>substances.</em><em> </em>
- <em>Increase</em><em> </em><em>in </em><em>temperature</em><em>.</em>
- <em>Change</em><em> </em><em>in </em><em>state</em><em>.</em>
- <em>Change</em><em> </em><em>in </em><em>physical</em><em> </em><em>property</em>
- <em>It </em><em>may </em><em>bring</em><em> </em><em>out </em><em>chemical</em><em> </em><em>changes</em><em>.</em>
__________________________________

Br2 because it is non polar and so is CCl4 and like molecules dissolve like molecules therefore Br2 will dissolve in CCl4
The heat released by the water when it cools down by a temperature difference AT
is Q = mC,AT
where
m=432 g is the mass of the water
C, = 4.18J/gºC
is the specific heat capacity of water
AT = 71°C -18°C = 530
is the decrease of temperature of the water
Plugging the numbers into the equation, we find
Q = (4329)(4.18J/9°C)(53°C) = 9.57. 104J
and this is the amount of heat released by the water.
Answer:
Mass = 114.26 g
Explanation:
Given data:
Number of gold atoms = 3.47×10²³ atoms
Mass in gram = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
3.47×10²³ atoms × 1 mol /6.022 × 10²³ atoms
0.58 mol
Mass of gold:
Mass = number of moles × molar mass
Mass = 0.58 mol × 197 g/mol
Mass = 114.26 g