Answer:
The resulting magnetic force on the wire is -1.2kN
Explanation:
The magnetic force on a current carrying wire of length 'L' with current 'I' in a magnetic field B is
F = I (L*B)
Finding (L * B) , where L = (2, 0, 0)m , B = (30, -40, 0)
L x B =
= (0, 0, -80)
we can now solve
F = I (L x B) = I (-80)
F = -1200 kmN
F = -1200 kN * 10⁻³
F = -1.2kN
Answer:
Leave onions in cold water for about 15 minutes! Takes out the chemical reaction in the onion's defense system.
Explanation:
This is what people NEED to know for cooking... Lol :)
Answer:
0.687 m/s
Explanation:
Initial energy = final energy
1/2 mu² = mgh + 1/2 mv²
1/2 u² = gh + 1/2 v²
Given u = 2.00 m/s, g = 9.8 m/s², and h = 0.180 m:
1/2 (2.00 m/s)² = (9.8 m/s²) (0.180 m) + 1/2 v²
v = 0.687 m/s
Answer:
When an electromagnetic wave passes from space to matter, some part of the energy is absorbed by the matter and it increases its energy. The wave may reflect and some part may pass through the matter depending on the amount of energy they have. The amplitude of the wave decreases if some parts of it are reflected.