1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helga [31]
3 years ago
14

Which major planet has the largest . . . A. semimajor axis? B. average orbital speed around the Sun? C. orbital period around th

e Sun? D. eccentricity?
Physics
1 answer:
Yuliya22 [10]3 years ago
6 0
<h2>Mercury, Neptune, and Jupiter </h2>

Explanation:

  • Mercury has the largest semimajor axis that is 5.791 x 107 in km.
  • Mercury is the planet with the fastest speed, which has an average orbital speed around the sun for about 47.87 km/s.
  • Neptune has the longest orbital speed around the sun of any planet in the Solar System which is equivalent to 164.8 years (or 60,182 Earth days)
  • Jupiter has the largest eccentricity.

Hence, the answer is Mercury, Neptune, and Jupiter respectively.

You might be interested in
What was the MAIN purpose of the International Cotton Expositions held in Atlanta
KengaRu [80]

Answer:

To foster trade between southern states and South American nations. Also to show the products and facilities to share in Europe & rest of nation.

4 0
3 years ago
A battery is used to power a flashlight. When the flashlight is in use, what type of energy is lost during energy transformation
diamong [38]

Answer:

The answer is chemical energy

4 0
3 years ago
Read 2 more answers
When an object (like a ball) falls, some of its___ energy changes to ___ energy, due to the law of conservation of energy
Alinara [238K]

Answer:

potential, kinetic

Explanation:

pls give brainliest :p

8 0
3 years ago
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
The electric field in a region of space increases from 0 to 2150 N/C in 5.00 s. What is the magnitude of the induced magnetic fi
Feliz [49]

To solve this problem we will use the Ampere-Maxwell law, which   describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

\oint \vec{B}\vec{dl} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}

Where,

B= Magnetic Field

l = length

\mu_0 = Vacuum permeability

\epsilon_0 = Vacuum permittivity

Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

B(2\pi r) = \mu_0 \epsilon_0 \frac{d(EA)}{dt}

Recall that the speed of light is equivalent to

c^2 = \frac{1}{\mu_0 \epsilon_0}

Then replacing,

B(2\pi r) = \frac{1}{C^2} (\pi r^2) \frac{d(E)}{dt}

B = \frac{r}{2C^2} \frac{dE}{dt}

Our values are given as

dE = 2150N/C

dt = 5s

C = 3*10^8m/s

D = 0.440m \rightarrow r = 0.220m

Replacing we have,

B = \frac{r}{2C^2} \frac{dE}{dt}

B = \frac{0.220}{2(3*10^8)^2} \frac{2150}{5}

B =5.25*10^{-16}T

Therefore the magnetic field around this circular area is B =5.25*10^{-16}T

3 0
3 years ago
Other questions:
  • A satellite orbits earth at 800 m from the earth's center. Gravity at this location is 6.2 m/s^2. What is the velocity of the sa
    15·1 answer
  • What simple machine makes up most of the joints in your body
    10·1 answer
  • Which of the following best characterizes the global role of photosynthesis in relation to global warming?
    15·1 answer
  • You are on a train going north and you see a car going north too, but it appears to be heading backwards, why?
    9·1 answer
  • Why is the sun renewable but oil is non renewable?
    15·1 answer
  • A 56.0-kg child takes a ride on a Ferris wheel that rotates four times each minute and has a diameter of 22.0 m. (a) What is the
    15·1 answer
  • What are tadpoles? How does it look like
    5·2 answers
  • HELP ME OUT PLEASE!!!!!
    12·2 answers
  • A track consists spring launcher on one end. A spring which is compressed 0.5 m has a
    7·1 answer
  • Energy travels at right angles to the direction of the vibrating particles in ________ waves.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!