We're happy that you're asking for the "displacement", because displacement is simply the straight-line distance between the start-point and end-point, and we don't care about any of the motions or gyrations along the way.
From the graph:
-- The location of the object at time-zero, when time begins, is 10 meters.
-- The location of the object after 6.0 seconds is 4 meters.
-- The distance between the start-point and end-point is
(final location) - (initial location)
-- So Displacement = (4 meters) - (10 meters)
<em>Displacement = -6 meters</em>
Answer:
The reactive part of a circuit changes electrical energy into another form of energy.
Explanation:
The reactive part of a circuit changes electrical energy into another form of energy.
The inductive part of a circuit changes electrical energy to magnetic energy and the capacitive part of a circuit changes electrical energy to electrostatic energy.
Momentum = mass x velocity = 91x9 = 819 kg-m/s.
In order to compute the final velocity of the trains, we may apply the principle of conservation of momentum which is:
initial momentum = final momentum
m₁v₁ = m₂v₂
The final mass of the trains will be:
10,000 + 10,000 = 20,000 kg
Substituting the values into the equation:
10,000 * 3 = 20,000 * v
v = 1.5 m/s
The final velocity of the trains will be 1.5 m/s