Answer:
V = 192 kV
Explanation:
Given that,
Charge, 
Distance, r = 0.3 m
We need to find the electric potential at a distance of 0.3 m from a point charge. The formula for electric potential is given by :

So, the required electric potential is 192 kV.
Answer:
Ya inan bana çok özür dilerim cevabı bilmiyorum ama ilk defa bugün indirdim ve hiç türk yoktu selam vermek istedim selam jwlwpskwks herkes yabancı burda neden?
Answer:
The volume of the block is equal to the volume of water displaced by the block.
Explanation:
Volume refers to the amount of space occupied by a given object (in this case the block). When an object such as the block is immersed in water, it displaces its own volume of water. This volume of water displaced is equal to the volume of the block. Hence we can write;
Final Volume of water - Initial Volume of water= Water Displaced = Volume of the block
Recall that the density of a body is given by;
Density= mass/volume
If we obtain the volume of the block by measuring the volume of water displaced by the block, then we weigh the block using a weighing balance, we can obtain the density of the block easily from the relationship shown above.
Answer
A thin atmosphere does not supply much oxygen, and the heat from the sun would evaporate it, because mercury is close to the sun.
To solve this problem it is necessary to apply the concepts related to wavelength depending on the frequency and speed. Mathematically, the wavelength can be expressed as

Where,
v = Velocity
f = Frequency,
Our values are given as
L = 3.6m
v= 192m/s
f= 320Hz
Replacing we have that


The total number of 'wavelengths' that will be in the string will be subject to the total length over the size of each of these undulations, that is,



Therefore the number of wavelengths of the wave fit on the string is 6.