Answer:
Buffer 1.
Explanation:
Ammonia is a weak base. It acts like a Bronsted-Lowry Base when it reacts with hydrogen ions.
.
gains one hydrogen ion to produce the ammonium ion
. In other words,
is the conjugate acid of the weak base
.
Both buffer 1 and 2 include
- the weak base ammonia
, and - the conjugate acid of the weak base
.
The ammonia
in the solution will react with hydrogen ions as they are added to the solution:
.
There are more
in the buffer 1 than in buffer 2. It will take more strong acid to react with the majority of
in the solution. Conversely, the pH of buffer 1 will be more steady than that in buffer 2 when the same amount of acid has been added.
Answer:
5.41 g
Explanation:
Considering:
Or,
Given :
For tetraphenyl phosphonium chloride :
Molarity = 33.0 mM = 0.033 M (As, 1 mM = 0.001 M)
Volume = 0.45 L
Thus, moles of tetraphenyl phosphonium chloride :
Moles of TPPCl = 0.01485 moles
Molar mass of TPPCl = 342.39 g/mol
The formula for the calculation of moles is shown below:
Thus,
Mass of TPPCl = 5.0845 g
Also,
TPPCl is 94.0 % pure.
It means that 94.0 g is present in 100 g of powder
5.0845 g is present in 5.41 g of the powder.
<u>Answer - 5.41 g</u>
Sulfur trioxide (SO3) is a chemical compound that is a significant pollutant in gaseous form as it is involved in the production of acid rain.
Industrially, sulfur trioxide is an important precursor to sulfuric acid and is formed from the reaction between sulfur dioxide (SO2) and oxygen gas (O2) as shown in the chemical equation below.
D. all of the above, although I do find it hard to believe something like flour would have a melting point, I looked up my answer to double check.
Answer:
(B) II, IV.
hope this answer is helpful for u.