100,000ths place. You are welcome
13 times i think
You just divide 9.75 by .75 and you get 13
(1) y² + x² = 53
(2) y - x = 5 ⇒ y = x + 5
subtitute (2) to (1)
(x + 5)² + x² = 53 |use (a + b)² = a² + 2ab + b²
x² + 2x·5 + 5² + x² = 53
2x² + 10x + 25 = 53 |subtract 53 from both sides
2x² + 10x - 28 =0 |divide both sides by 2
x² + 5x - 14 = 0
x² - 2x+ 7x - 14 = 0
x(x - 2) + 7(x - 2) = 0
(x - 2)(x + 7) = 0 ⇔ x - 2 = 0 or x + 7 = 0 ⇔ x = 2 or x = -7
subtitute the values of y to (2)
for x = 2, y = 5 + 2 = 7
for x = -7, y = 5 + (-7) = 5 - 2 = 3
Answer: x = 2 and y = 7 or x = -7 and y = 3
Answer:
idk
Step-by-step explanation:
Answer: You need to wait at least 6.4 hours to eat the ribs.
t ≥ 6.4 hours.
Step-by-step explanation:
The initial temperature is 40°F, and it increases by 25% each hour.
This means that during hour 0 the temperature is 40° F
after the first hour, at h = 1h we have an increase of 25%, this means that the new temperature is:
T = 40° F + 0.25*40° F = 1.25*40° F
after another hour we have another increase of 25%, the temperature now is:
T = (1.25*40° F) + 0.25*(1.25*40° F) = (40° F)*(1.25)^2
Now, we can model the temperature at the hour h as:
T(h) = (40°f)*1.25^h
now we want to find the number of hours needed to get the temperature equal to 165°F. which is the minimum temperature that the ribs need to reach in order to be safe to eaten.
So we have:
(40°f)*1.25^h = 165° F
1.25^h = 165/40 = 4.125
h = ln(4.125)/ln(1.25) = 6.4 hours.
then the inequality is:
t ≥ 6.4 hours.