Answer:
576.21kJ
Explanation:
#We know that:
The balance mass 
so, 

#Also, given the properties of water as;

#We assume constant properties for the steam at average temperatures:
#Replace known values in the equation above;
#Using the mass and energy balance relations;

#We have
: we replace the known values in the equation as;

#Hence,the amount of heat transferred when the steam temperature reaches 500°C is 576.21kJ
Answer:
Mechanical Efficiency = 83.51%
Explanation:
Given Data:
Pressure difference = ΔP=1.2 Psi
Flow rate = 
Power of Pump = 3 hp
Required:
Mechanical Efficiency
Solution:
We will first bring the change the units of given data into SI units.

Now we will find the change in energy.
Since it is mentioned in the statement that change in elevation (potential energy) and change in velocity (Kinetic Energy) are negligible.
Thus change in energy is

As we know that Mass = Volume x density
substituting the value
Energy = Volume * density x ΔP / density
Change in energy = Volumetric flow x ΔP
Change in energy = 0.226 x 8.274 = 1.869 KW
Now mechanical efficiency = change in energy / work done by shaft
Efficiency = 1.869 / 2.238
Efficiency = 0.8351 = 83.51%
Answer:
The value of Modulus of elasticity E = 85.33 ×

Beam deflection is = 0.15 in
Explanation:
Given data
width = 5 in
Length = 60 in
Mass of the person = 125 lb
Load = 125 × 32 = 4000
We know that moment of inertia is given as


I = 1.40625 
Deflection = 0.15 in
We know that deflection of the beam in this case is given as
Δ = 

E = 85.33 ×

This is the value of Modulus of elasticity.
Beam deflection is = 0.15 in