Answer:
88750 N
Explanation:
given data:
plastic deformation σy=266 MPa=266*10^6 N/m^2
cross-sectional area Ao=333 mm^2=333*10^-6 m^2
solution:
To determine the maximum load that can be applied without
plastic deformation (Fy).
Fy=σy*Ao
=88750 N
Answer:
(a) The magnitude of force is 116.6 lb, as exerted by the rod CD
(b) The reaction at A is (-72.7j-38.1k) lb and at B it is (37.5j) lb.
Explanation:
Step by step working is shown in the images attached herewith.
For this given system, the coordinates are the following:
A(0, 0, 0)
B(26, 0, 0)
And the value of angle alpha is 20.95°
Hope that answers the question, have a great day!
Given:
Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following for air at 300 K and engine oil at 380 K. Assume the free stream velocity is 3 m/s.
To Find:
a. The distance from the leading edge at which the transition will occur.
b. Expressions for the momentum and thermal boundary layer thicknesses as a function of x for a laminar boundary layer
c. Which fluid has a higher heat transfer
Calculation:
The transition from the lamina to turbulent begins when the critical Reynolds
number reaches 



Answer:
(a) Yes
(b) 102.8 ft
Explanation:
(a)First let convert mile per hour to feet per second
30 mph = 30 * 5280 / 3600 = 44 ft/s
The time it takes for this driver to decelerate comfortably to 0 speed is
t = v / a = 44 / 10 = 4.4 (s)
given that it also takes 1.5 seconds for the driver reaction, the total time she would need is 5.9 seconds. Therefore, if the yellow light was on for 4 seconds, that's not enough time and the dilemma zone would exist.
(b) At this rate the distance covered by the driver is


Since the intersection is only 60 feet wide, the dilemma zone must be
162.8 - 60 = 102.8 ft