Answer:
2192.64 PSI.
Explanation:
- From the general law of ideal gases:
<em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the container in L (V = 1650 L).
n is the no. of moles of the gas in mol (n = 9750 mol).
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature of the gas in (T = 35°C + 273 = 308 K).
∴ P = nRT/V = (9750 mol)(0.082 L.atm/mol.K)(308 K)/(1650 L) = 149.2 atm.
- <u><em>To convert from atm to PSI:</em></u>
1 atm = 14.696 PSI.
<em>∴ P = 149.2 atm x (14.696 PSI/1.0 atm) = 2192.64 PSI.</em>
Answer:
inspiration means
the process of being mentally stimulated to do or feel something, especially to do something creative.
The answer is A. Permeability.
And what are the compounds?
Answer:
0.558mole of SO₃
Explanation:
Given parameters:
Molar mass of SO₃ = 80.0632g/mol
Mass of S = 17.9g
Molar mass of S = 32.065g/mol
Number of moles of O₂ = 0.157mole
Molar mass of O₂ = 31.9988g/mol
Unknown:
Maximum amount of SO₃
Solution
We need to write the proper reaction equation.
2S + 3O₂ → 2SO₃
We should bear in mind that the extent of this reaction relies on the reactant that is in short supply i.e limiting reagent. Here the limiting reagent is the Sulfur, S. The oxygen gas would be in excess since it is readily availbale.
So we simply compare the molar relationship between sulfur and product formed to solve the problem:
First, find the number of moles of Sulfur, S:
Number of moles of S = 
Number of moles of S =
= 0.558mole
Now to find the maximum amount of SO₃ formed, compare the moles of reactant to the product:
2 mole of Sulfur produced 2 mole of SO₃
Therefore; 0.558mole of sulfur will produce 0.558mole of SO₃