If you are looking for a simpler maintenance timeline, oil your machine once after every fifty hours of use, or at the same time you can clean out the lint that may have built up in the machine various books and crannies.
If the gases are at the same temperature and pressure, the ratio of their effusion rates is directly proportional to the ratio of the square roots of their molar masses:
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
Where
- R₁ and R₂ are the rates of the two gas
- M₁ and M₂ are the molar masses of the two gas
From the Graham's law equation, we can see that the ratio of the rates of effusion of the two gases is directly proportional to the square root of their molar masses
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
#SPJ1
<span>B. chemical control by use of chemicals
</span><span>D.physical control by physically removing the species
</span><span>
A. biological control by using other living organisms to rid of invasive species
</span>
Taken the quiz, and got them all correctly answered!
Have a good day. <span />
Answer:8
Everything after the decimal place is a significant figure here
Answer:
Maybe I know too much chemistry but how the metals (and the non-metals) react depends on where they are in the Periodic Table. The metals in groups I and II over on the far left side are explosively reactive and loose electrons and form ionic bonds. Examples: Na+1 has lost 1 electron and Li+2 has lost 2 electrons. The metals in the higher groups are more confusing but most of them share outer shell electrons and form covalent bonds. Examples: Fe2O3 (rust) where Iron shares 2X3 electrons with Oxygen which shares 3X2 electrons. Confused enough? :-)
The answer you'll be expected to give depends on the subject of the chapter you're studying. If you're studying covalent bonds, then the answer will probably be "form covalent bonds". If you're studying ionic bonds, then the answer will be "lose electrons".
Explanation:
This may not be the answer... I'm sorry if it's not