The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Answer:
3.258 m/s
Explanation:
k = Spring constant = 263 N/m (Assumed, as it is not given)
x = Displacement of spring = 0.7 m (Assumed, as it is not given)
= Coefficient of friction = 0.4
Energy stored in spring is given by

As the energy in the system is conserved we have

The speed of the 8 kg block just before collision is 3.258 m/s
The answer is : D
Reasoning:
Homeostasis is the body’s balance
Answer:
Quick action was in this as a thought of he knew he could die from this
Answer:
70509.8039216 N/C
Explanation:
k = Coulomb constant = 
q = Charge = 2.00 µC
l = Length of filament = 5.1 m
r = Radius of cylinder = 10 cm

Electric field is given by

The electric field at the surface of the cylinder is 70509.8039216 N/C