Answer:
%age Yield = 34.21 %
Explanation:
The balance chemical equation for the decomposition of KClO₃ is as follow;
3 KOH + H₃PO₄ → K₃PO₄ + 3 H₂O
Step 1: Calculate moles of H₃PO₄ as;
Moles = Mass / M/Mass
Moles = 334.6 g / 97.99 g/mol
Moles = 3.414 moles
Step 2: Find moles of K₃PO₄ as;
According to equation,
1 moles of H₃PO₄ produces = 1 moles of K₃PO₄
So,
3.414 moles of H₃PO₄ will produce = X moles of K₃PO₄
Solving for X,
X = 1 mol × 3.414 mol / 1 mol
X = 3.414 mol of K₃PO₄
Step 3: Calculate Theoretical yield of K₃PO₄ as,
Mass = Moles × M.Mass
Mass = 3.414 mol × 212.26 g/mol
Mass = 724.79 g of K₃PO₄
Also,
%age Yield = Actual Yield / Theoretical Yield × 100
%age Yield = 248 g / 724.79 × 100
%age Yield = 34.21 %
Answer:
The correct option is 2.No, because only electrons are involved in bonding.
Explanation:
The type of bond formed by carbon and nitrogen (carbon-nitrogen bond) is covalent bond
Also known as molecular bond, a covalent bond involves the sharing of pairs of electrons (known as bonding pairs or shared pairs) between the carbon and nitrogen atoms forming stable, balanced forces in attraction and repulsion as they share common electrons in their compounds.
This electron sharing covalent bond is what enables the formation of the several compounds between carbon and nitrogen for example, in an amine, nitrogen which has five electrons, has two remaining electrons that forms a lone pair whereby it can combine further with other elements.
Hence the factor that influences the bonds to make the numerous organic molecules is the available electrons which constitutes the shared electron pairs in covalent bonds while the neutrons which function is to keep the repulsive forces of positively charged protons from ripping the nucleus apart.
Answer: The given statement is true.
Explanation: If this reaction would have occurred, then this reaction would be considered as displacement reaction.
Displacement reactions are the reaction in which more reactive element displaces the less reactive element in a chemical reaction. This is based on the reactivity of elements.
Reactivity of elements is the tendency of the elements to gain or loose electrons. The reactivity decreases down the group in a periodic table.
In the given reaction, Iodine and chlorine are the elements of the same group in the periodic table and iodine lies below chlorine in the group. So, the reactivity of iodine is less than the reactivity of chlorine.
Hence, in the given reaction, iodine will not replace chlorine because it lies below in the periodic table.

Answer: 1.
moles
2. 90 mg
Explanation:

According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus
moles of ozone is removed by =
moles of sodium iodide.
Thus
moles of sodium iodide are needed to remove
moles of 
2. 
According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus 0.0003 moles of ozone is removed by =
moles of sodium iodide.
Mass of sodium iodide=
(1g=1000mg)
Thus 90 mg of sodium iodide are needed to remove 13.31 mg of
.