Here are the choices:
Warm air rises while cold air falls.
The warmer air contains less water vapor per unit of volume.
The warmer air contains more water vapor per unit of volume.
Moist air has lower density than dry air does.
The best answer is: <em>The warmer air contains more water vapor per unit of volume.
</em>
Mass of Sulphur dioxide : 256 g
<h3>Further explanation</h3>
Given
Reaction
S + O2 --> SO2 *
Required
Mass of Sulphur dioxide
Solution
mol of Sulphur (Ar=32 g/mol) :
mol = mass : Ar
mol = 128 : 32
mol = 4
From the equation, mol ratio S : SO2 = 1 : 1, so mol SO2 = 4
Mass of SO2 :
mass = mol x MW SO2
mass = 4 x 64
mass = 256 g
Makes it seem bigger and brighter
<h3>
Answer:</h3>
1.827 × 10²⁴ molecules H₂S
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Compounds</u>
- Writing Compounds
- Acids/Bases
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
103.4 g H₂S (Sulfuric Acid)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of H - 1.01 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of H₂S - 2(1.01) + 32.07 = 34.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 4 sig figs.</em>
1.82656 × 10²⁴ molecules H₂S ≈ 1.827 × 10²⁴ molecules H₂S
Answer:
The correct option is B
Explanation:
The number of valence electron(s) increases across the period and thus influences the direction of periodic trend of electronegativity, electron affinity and ionization energy across the period. Thus, making option B the answer.
It should be noted that option A is wrong because elements in the same period generally have the same number of electron shells and thus the distance of this shells from the nucleus remains the same throughout the same period and thus option C is also wrong. Option D is wrong because the periodic trends have to do with chemical reactions which actually involves electrons and not protons.