The items are answered below and are numbered separately for each compound.
The freezing point of impure solution is calculated through the equation,
Tf = Tfw - (Kf)(m)
where Tf is the freezing point, Tfw is the freezing point of water, Kf is the freezing point constant and m is the molality. For water, Kf is equal to 1.86°C/m. In this regard, it is assumed that m as the unit of 0.25 is molarity.
1. NH4NO3
Tf = 0°C - (1.86°C/m)(0.25 M)(2) = -0.93°C
2. NiCl3
Tf = 0°C - (1.86°C/m)(0.25 M)(4) = -1.86°C
3. Al2(SO4)3
Tf = 0°C - (1.86 °C/m)(0.25 M)(5) = -2.325°C
For boiling points,
Tb = Tbw + (Kb)(m)
For water, Kb is equal to 0.51°C/m.
1. NH4NO3
Tb = 100°C + (0.51°C/m)(0.25 M)(2) = 100.255°C
2. NiCl3
Tb = 100°C + (0.51°C/m)(0.25 M)(4) = 100.51°C
3. Al2(SO4)3
Tb = 100°C + (0.51°C/m)(0.25 M)(5) = 100.6375°C
The water would freeze at a higher temperature than it would with the other ingredients.
An oxidation-reduction (redox) reaction is a type of chemical reaction that involves a transfer of electrons between two species. An oxidation-reduction reaction is any chemical reaction in which the oxidation number of a molecule, atom, or ion changes by gaining or losing an electron.
Answer:
<h2>(1). electron electron repulsion</h2><h2>(2). repulsion </h2><h2>(3). attraction </h2><h2>(4). maximum attraction </h2><h2>(5). attractive </h2><h2>(6). repulsive </h2><h2>(7). maximum attraction </h2><h2>(8). molecule </h2>
Explanation:
The same charges repel each other while opposite charges attract each other. During electron-electron interaction repulsion take palace because the electron has negative charges. Nucleus has positive charges so the interaction between two nucleus results in the form of repulsion. When interaction takes place between nucleus and electron then attraction takes place between nucleus and electrons due to opposite charges.
The formation of a bond that takes place due to the sharing of the electrons is known as a covalent bond and thus the covalent molecule is formed.
Answer: The Excretory system
Explanation: Because I said LoL