<span>The answer to your question is the 3rd option </span>
135.1kPa
Explanation:
Given parameters:
T1 = 27°C
P1 = 101.325 kPa
T2 = 127°C
Unknown:
P2 = ?
Solution:
Using a derivative of the combined gas law where we assume that the gas has a constant volume, we can solve for the unknown.
At constant volume:

P1 is the initial pressure
T1 is the initial temperature
P2 is the final pressure
T2 is the final temperature
Take the given temperature to K
T1 = 27 + 273 = 300K
T2 = 127 + 273 = 400K
Input the variables:

P2 = 135.1kPa
learn more:
Boyle's law brainly.com/question/8928288
#learnwithBrainly
Answer: The pair that consists of a base and its conjugate acid in that order.
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.



is gaining a proton, thus it is considered as a brønsted-lowry base and after gaining a proton, it forms
which is a conjugate acid.
Answer:
Ion exchange.
Explanation:
One of the ways in which water can be treated is through the process known as ION EXCHANGE. Using this for treating water has to do basically with the transfer or say the exchange of ions.
Ion exchanges is done by exchanging ions which are considered as 'unfit' or contaminants by the ones that are "fit".
Ions from what is known as zeolite or resin is been exchanged with the ions in the water. Cations are exchanged with cations and anions are exchanged with anions.
NB: this method is a good method or removing contaminants that are ions but not contaminants that are not ions.
Answer:
Having as wide a range of organisms as possible.
Hope it helps! :)