1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pantera1 [17]
3 years ago
13

A drag car starts from rest and moves down the racetrack with an acceleration defined by a = 50 - 10r, where a and fare in m/s^2

and seconds, respectively. After reaching a speed of 125 m/s, a parachute is deployed to help slow down the dragster. Knowing that this deceleration is defined by the relationship a = - 0.022v^2, where v is the velocity in m/s, determine the total time from the beginning of the race until the car slows back down to 10 m/s and the total distance the car travels during this time. The total time from the beginning of the race until the car slows back down to 10 m/s is____________ s. (Round the final answer to one decimal place.) The total distance the car travels during this time is m. (Round the final answer to one decimal place.)
Physics
2 answers:
zloy xaker [14]3 years ago
8 0

Answer:

The total time is 9.2 s

Explanation:

For the first stage:

a = 50 - 10t

dv/dt = 50 - 10t

Integrating:

\int\limits^v_0 {} \, dv =\int\limits^t_0 {(50-10t)} \, dt \\v=50t-5t^{2}

v = 125 m/s

Replacing:

t² - 10t + 25 = 0

Solving, t = 5 s (time elapsed)

dx/dt = 50t - 5t²

Integrating:

\int\limits^x_0 {} \, dx =\int\limits^5_0 {50t} \, dt -\int\limits^5_0 {5t^{2} } \, dt \\x=\frac{50t^{2} }{2} -\frac{5t^{3} }{3} =\frac{1250}{3} =416.67m

For the second stage:

a=-0.022v^{2} \\\frac{dv}{dt} =-0.022^{2} \\\int\limits^a_b {\frac{dv}{v^{2} } } \,  =-0.022\int\limits^t_0 {} \, dt , where a=10, b=125\\\frac{1}{10} -\frac{1}{125} =0.022t\\t=4.2s

\frac{dv}{dx} *\frac{dx}{dt} =-0.022v^{2} \\v\frac{dv}{dx} =-0.022v^{2} \\\frac{dv}{dx} =-0.022v\\\int\limits^a_b {\frac{dv}{v} =-0.022} \,  \int\limits^x_0 {} \, dx ,where-a=10,b=125\\ln\frac{10}{125} =-0.022x

Resolving x = 114.8 m

The total time is 9.2 s

The total distance is 531.8 m

xz_007 [3.2K]3 years ago
5 0

Answer:

Mistake in question

The correct question

A drag car starts from rest and moves down the racetrack with an acceleration defined by a = 50 - 10t , where a and t are in m/s² and seconds, respectively. After reaching a speed of 125 m/s, a parachute is deployed to help slow down the dragster. Knowing that this deceleration is defined by the relationship a = - 0.02v², where v is the velocity in m/s, determine (a) the total time from the beginning of the race until the car slows back down to 10 m/s, (b) the total distance the car travels during this time.

Explanation:

Given the function

a = 50 —10t

The car started from rest u = 0

And it accelerates to a speed of 125m/s

Then, let find the time in this stage

Acceleration can be modeled by

a = dv/dt

Then, dv/dt = 50—10t

Using variable separation to solve the differentiation equation

dv = (50—10t)dt

Integrating both sides

∫ dv = ∫ (50—10t)dt

Note, v ranges from 0 to 125seconds, so we want to know the time when it accelerate to 125m/s. So t ranges from 0 to t'

∫ dv = ∫ (50—10t)dt

v = 50t —10t²/2. Equation 1

[v] 0<v<125 = 50t —10t²/2 0<t<t'

125—0 = 50t — 5t² 0<t<t'

125 = 50t' — 5t'²

Divide through by 5

25 = 10t' — t'²

t'² —10t' + 25 = 0

Solving the quadratic equation

t'² —5t' —5t' + 25 = 0

t'(t' —5) —5(t' + 5) = 0

(t' —5)(t' —5) = 0

Then, (t' —5) = 0 twice

Then, t' = 5 seconds twice

So, the car spent 5 seconds to get to 125m/s.

The second stage when the parachute was deployed

We want to the time parachute reduce the speed from 125m/s to 10m/s,

So the range of the velocity is 125m/s to 10m/s. And time ranges from 0 to t''

The function of deceleration is give as

a = - 0.02v²

We know that, a = dv/dt

Then, dv/dt = - 0.02v²

Using variable separation

(1/0.02v²) dv = - dt

(50/v²) dv = - dt

50v^-2 dv = - dt

Integrate Both sides

∫ 50v^-2 dv = -∫dt

(50v^-2+1) / (-2+1)= -t

50v^-1 / -1 = -t

- 50v^-1 = -t

- 50/v = - t

Divide both sides by -1

50/v = t. Equation 2

Then, v ranges from 125 to 10 and t ranges from 0 to t''

[ 50/10 - 50/125 ] = t''

5 - 0.4 = t''

t'' = 4.6 seconds

Then, the time taken to decelerate from 125s to 10s is 4.6 seconds.

So the total time is

t = t' + t''

t = 5 + 4.6

t = 9.6 seconds

b. Total distanctraveleded.

First case again,

We want to find the distance travelled from t=0 to t = 5seconds

a = 50—10t

We already got v, check equation 1

v = 50t —10t²/2 + C

v = 50t — 5t² + C

We add a constant because it is not a definite integral

Now, at t= 0 v=0

So, 0 = 0 - 0 + C

Then, C=0

So, v = 50t — 5t²

Also, we know that v=dx/dt

Therefore, dx/dt = 50t — 5t²

Using variable separation

dx = (50t —5t²)dt

Integrate both sides.

∫dx = ∫(50t —5t²)dt

x = 50t²/2 — 5 t³/3 from t=0 to t=5

x' = [25t² — 5t³/3 ]. 0<t<5

x' = 25×5² — 5×5³/3 —0

x' = 625 — 208.333

x' = 416.667m

Stage 2

The distance moved from

t=0 to t =4.6seconds

a = -0.002v²

We already derived v(t) from the function above, check equation 2

50/v = t + C.

When, t = 0 v = 125

50/125 = 0 + C

0.4 = C

Then, the function becomes

50/v = t + 0.4

50v^-1 = t + 0.4

Now, v= dx/dt

50(dx/dt)^-1 = t +0.4

50dt/dx = t + 0.4

Using variable separation

50/(t+0.4) dt = dx

Integrate both sides

∫50/(t+0.4) dt = ∫ dx

50 In(t+0.4) = x

t ranges from 0 to 4.6seconds

50In(4.6+0.4)—50In(4.6-0.4) = x''

x'' = 50In(5) —50In(4.2)

x'' = 8.72m

Then, total distance is

x = x' + x''

x = 416.67+8.72

x = 425.39m

The total distance travelled in both cases is 425.39m

You might be interested in
The mechanical advantage of a lever is 4 . what does it mean?​
boyakko [2]

Answer:

It means...

Explanation:

The mechanical advantage of a machine is 4. Mechanical advantage MA is the ratio of output (generated by the machine) force to input (applied to the machine) force. So MA = 4 means that for example if you apply 100 N then your machine will multiply that force and generate 400 N.

3 0
3 years ago
Read 2 more answers
Consider an electron traveling horizontally in the positive direction, above, near, and parallel to a current-carrying wire. The
allsm [11]

Answer:

(a) The electron will move towards the wire.

The direction of the magnetic fields created by the wire can be found via right-hand rule. If you point your thumb towards the direction of the current, and if you curl your fingers, the direction of your four fingers will give the direction of the magnetic field. In this case, magnetic field is around the wire, and into the page just above the wire, where the electron is located.

\vec{F} = q\vec{v} \times \vec{B}

According to the above formula, the direction of the force the wire applies to the electron can be found by right-hand rule.

Since the electron has a negative charge, the direction of the force is towards the wire.

(b) The proton will veer to the right.

The direction of the magnetic field is the same as the previous part. The proton has a positive charge, and coming from above. The direction of its velocity is downwards. The magnetic field above the wire is pointed into the page. Using the right-hand rule, the magnetic force on the proton is directed to the right, with respect to us.

6 0
3 years ago
5- A 2500g object is pushed with 55N for 12m in 11s, there was a force of friction of 30N.
Assoli18 [71]

Answer:

1kg =1000g

2.5kg

D=12m

t=11s

F=2.5KG

Explanation:

work done =f.d

=2.5×12

=30Nm

55-30

average speed

final - initial

divide by time t(s)

3 0
2 years ago
67 points plus brainlest if done correctly.I will report you if you answer 3 or less of the questions, also must post all the an
Annette [7]

im sorry but i dont know, good luck at finding someone else who does.

3 0
3 years ago
What is the angle between a wire carrying an 8.40 A current and the 1.20 T field it is in, if 50.0 cm of the wire experiences a
Elena L [17]

Answer:

A. 30.38°

B 5.04N

Explanation:

Using

F= ILBsin theta

2 .55N= 8.4Ax 0.5mx 1.2T x sintheta

Theta = 30.38°

B. If theta is 90°

Then

F= 8.4Ax 0.5mx 1.2x sin 90°

F= 5.04N

6 0
3 years ago
Other questions:
  • I need help with this
    7·2 answers
  • How does heat affect the thermal energy of an object that is colder than the qir
    15·1 answer
  • . A fixed resistor of resistance 3.54  is part of an electrolysis circuit. In an experiment using this circuit, electrolysis wa
    8·1 answer
  • Is polarization possible for longitudinal waves ?
    5·1 answer
  • A simple harmonic oscillator consists of a block of mass 45 g attached to a spring of spring constant 240 N/m, oscillating on a
    11·2 answers
  • A water slide is constructed so that swimmers, starting from rest at the top of the slide, leave the end of the slide traveling
    14·1 answer
  • A car moves with an average speed of 45 miles/hour. How long does the car take to travel 90 m
    9·2 answers
  • How to calculate this operation? m=10kg and L=2500J/kg? What is the Energy?
    5·1 answer
  • How many 60-watt lamps could be connected in parallel on a 15-amp, 120-volt circuit without exceeding 80% of the rating of the c
    9·1 answer
  • Which states of a hydrogen atom can be excited by a collision with an electron with kinetic energy k = 12. 5 ev?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!