Answer:
Average net force, F = 15157.15 N
Explanation:
It is given that,
The mass of the car and riders is, 
Initial speed of the car, u = 0
Final speed of the car, v = 43.4 m/s
Time, t = 8.59 seconds
We need to find the average net force exerted on the car and riders by the magnets. It can be calculated using second law of motion as :
F = m a


F = 15157.15 N
So, the average net force exerted on the car and riders by the magnets. Hence, this is the required solution.
Answer:
The relative velocity of the motorcycle to a passenger in the car is 30 km/h
Explanation:
The question relates to the principle of relative velocity and reference frames
The given parameters are;
The velocity of the motorcycle, v₁ = 120 km/h
The velocity of the car, v₂ = 90 km/h
The relative velocity of an object X with regards to another object Y is the velocity the object X will seem to be moving with to an observer in the rest frame of object Y written as
=
- 
Therefore, the relative velocity of the motorcycle to the car is
= v₁ - v₂, which give;
= 120 km/h - 90 km/h = 30 km/h
The relative velocity of the motorcycle to a passenger in the car = 30 km/h.
<span>a) write a polynomial expression for the position of the particle at any time t greater or equal to zero.
</span>Position is found by integrating velocity:
<span>s(t) = (t^3)/3 - 4t^2 + 7t + c
</span>where c is a constant corresponding to the position at t=0. <span>
b) at what time(s) is the particle changing direction
</span>the particle changes direction whenever the velocity is zero; the velocity function equals
<span>(t-1)(t-7) a difference of squares so the zeros are 1 and 7, it changes direction at 1 second and 7 seconds. </span><span>
c) find the total distance traveled by the particle from t=0 and t=4
</span><span>s(0) = c
s(1) = 8/3 + c
s(4) = 64/3 - 64 + 28 + c.
</span>
from 0 to 1 the particle travels 8/3 units. From 1 to 4 it travels -(64/3 - 36 - 8/3) = (-(56/3 - 108/3))
<span>=-(-52/3) = 52/3 units
</span>
<span>so in total it travels 52/3 + 8/3 =20 units</span>
Answer: Option A: The spots on the balloon move away as the balloon is inflated.
one of the scientific models describes the galaxies are moving apart as the universe is expanding. This expansion theory came from the observation of red-shifted spectrum from all the directions indicating that the galaxies are moving away. This can be understood from the inflated balloon. Initially spots can be marked using a colored pen on the balloon.On inflating the balloon, it would be noticed that the spots on the balloon move away. Actually the position of the spots won't change, but the distance between the spots would expand. This is a good model to explain the expanding universe. The galaxies are neither moving in any random direction nor moving forward. So, rest of the options are not good models to explain the theory.
Protons, electrons, and neutrons. The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge).