Answer:
0.01931034
Explanation:
Steps:
ρ = m/v
=
28 gram
1.45 cubic meter
= 19.310344827586 gram/cubic meter
= 0.019310344827586 kilogram/cubic meter
The question above can be solved by using this equation:
CAVA =CBVB
Where:
CA =Concentration of acid = 1.0 M
VA = Volume of acid = ?
CB = Concentration of base = 1.0 M
VB = Volume of base = 25 ml
VA = CBVB / CA
VA = [1 * 25] / 1 = 25 / 1 = 25
VA = 25 ml
Therefore, the volume of acid that is required to completely neutralize the base is 25 ml.<span />
B:Molecules must collide.
Why: They have to collide so the chemical bonds can break.
Answer:
The ratio of acid to conjugate base is outside the buffer range of 10:1.
Explanation:
The Henderson-Hasselbalch equation for a buffer is
![\text{pH} = \text{pK}_{\text{a}} + \log\dfrac{\text{[A$^{-}$]}}{\text{[HA]}}](https://tex.z-dn.net/?f=%5Ctext%7BpH%7D%20%3D%20%5Ctext%7BpK%7D_%7B%5Ctext%7Ba%7D%7D%20%2B%20%5Clog%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D)
A buffer should have
![\dfrac{1}{10} \leq \dfrac{\text{[A$^{-}]$}}{\text{[HA]}} \leq \dfrac{10}{1}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B10%7D%20%5Cleq%20%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%5D%24%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%20%5Cleq%20%5Cdfrac%7B10%7D%7B1%7D)
For a solution that is 1.3 mol·L⁻¹ in HF and 1.3 mmol·L⁻¹ in KF, the ratio is

The ratio of acid to conjugate base is 1000:1, which is outside the range of 10:1.
A is wrong. NF is a weak acid.
C is wrong. The two species are a conjugate acid-base pair.
D is wrong. Salts of Group 1 metals are soluble.