Answer:
Here's what I got:
Let's assume that N and E are + directions while S and W are - directions.
Wind is blowing from SW; thus, it is blowing towards NE (or at 45 deg N of E).
Dividing the wind's speed into components:y-component: +70.71 km/h; x-component: +70.71 km/h
Dividing the airplane's speed into components:y-component: -600 km/h; x-component: 0 km/h
Adding the components to get the resulting components:y-component: -529.29 km/h; x-component: +70.71
Using the Pythagorean Theorem to find the resulting speed:v^2 = y^2 + x^2 so v = 533.99 km/h
To find the angle of direction, use arctan (y/x):arctan (529.29/70.71) = 82.39 deg
ANSWER: velocity = 533.99 km/h at 82.39 deg S of E
Explanation:
Answer:
Sound wave types - longitudinal waves
Longitudinal waves - Vibrating string the creates sound in the way it moves.
Explanation:
Longitudinal waves have particles of the medium that are displaced in a parallel direction to energy transport.
Answer:
During those 3.00 seconds before stopping, the car travels a distance of 6 m.
Explanation:
The simple rule of three is a tool that is used to quickly solve problems, where three pieces of information must be known, and one of them operates as an unknown to be known.
Two magnitudes are directly proportional if one magnitude increases the other also does it, and if the magnitude decreases the other in the same way.
Being a, b and c known data and x the unknown, the value that we want to know, the rule of three when the magnitudes are directly proportional is applied as follows:
a ⇒ b
c ⇒ x
So: 
In this case, knowing that a truck travels at 2 m/s, the rule of three applies as follows: if in 1 second the truck travels 2 m, in 3 seconds how much distance does it travel?

distance= 6 m
<u><em>
During those 3.00 seconds before stopping, the car travels a distance of 6 m.</em></u>
Answer:
A flame always point upwards because the flame's gas is hotter than the surrounding air and, like you said, a hot gas is always lighter or less dense than a cold gas.
Explanation: