Explanation:
Carbon dioxide is a polar molecule whose positive center is on the carbon atom: This positive center is able to attract (and accept) the lone electron pairs present on the oxide ion (O2-). carbon dioxide is acts as a Lewis acid
A Lewis acid can accept a pair of electrons from a Lewis base. The boron in BF3 is electron poor and has an empty orbital, so it can accept a pair of electrons, making it a Lewis acid. A Lewis acid is defined as an electron-pair acceptor.
In CO molecule, there is a lone pair on both carbon and oxygen. The substance which can donate an electron pair are called Lewis base. It is clear that CO molecule can donate an electron pair and hence, it is a Lewis base. Also, CO can be BOTH a Lewis acid and base.
Oxygen is a Lewis base (that too a weak one), not a Lewis acid. REASON: It has lone pair of electrons, which can be donated to electron-deficient species (Lewis acids).
Methane is Neither a Lewis Acid or Lewis Base.
Ions are Formed when atoms lose or gain electrons in order to fulfill the octet rule and have full outer valence electron shells.
Explanation:
Entropy is defined as the degree of randomness present in a substance. Therefore, more is the irregularity present in a compound more will be its molar entropy.
Hence, decreasing order to molar entropy in state of matter is as follows.
Gases > Liquids > Solids
- In the first pair, we are given
or
. Since, molar entropy of liquids is less than the molar entropy of gases.
Hence,
will have larger molar entropy as compared to
.
- In the second pair, we are given Fe(s) or Ni(s). More is the molar mass of a compound more will its molar entropy. Molar mass of Fe is 55.84 g/mol and molar mass of Ni is 58.69 g/mol.
Hence, molar entropy of Ni(s) is more than the molar entropy of Fe(s).
- In the third pair, we are given
or
. As both the given species are gaseous in nature. So, more is the molar mass of specie more will be its molar entropy.
Molar mass of
is 30.07 g/mol and molar mass of
is 28.05 g/mol. Therefore, molar entropy of
is more than the molar entropy of
.
- In the fourth pair, we are given
or
. Molar mass of
is 153.82 g/mol and molar mass of
is 16.04 g/mol.
Therefore, molar entropy of
is more than the molar entropy of
.
- In the fifth pair, we are given HgO(s) or MgO(s). Molar mass of HgO is 216.59 g/mol and molar mass of MgO is 40.30 g/mol.
Hence, molar entropy of HgO(s) is more than the molar entropy of MgO.
- In the fifth pair, we are given NaCl(aq) or
. Molar mass of NaCl 58.44 g/mol and molar mass of
is 95.21 g/mol.
Hence, the molar entropy of
is more than the molar entropy of NaCl(aq).
Answer:
its 57.56
Explanation:
dont ask me how it is just is trust me
Titration experiments require the use of a burette. It is a long graduated glass tube held in place by a clamp stand. It has a tap fixture on the end that regulates the delivery of small volumes of liquid into a beaker in the titration process. Bunsen burners are used to heat substances and crucibles are used to hold items to be heated to high temperatures.