Answer:
9) This is a case of deceleration
10)-0.8 ms-2
b) acceleration is the change in velocity with time
11)
a) 100 ms-1
b) 100 seconds
12) 10ms-1
13) more information is needed to answer the question
14) - 0.4 ms^-2
15) 0.8 ms^-2
Explanation:
The deceleration is;
v-u/t
v= final velocity
u= initial velocity
t= time taken
20-60/50 =- 40/50= -0.8 ms-2
11)
Since it starts from rest, u=0 hence
v= u + at
v= 10 ×10
v= 100 ms-1
b)
v= u + at but u=0
1000 = 10 t
t= 1000/10
t= 100 seconds
12) since the sprinter must have started from rest, u= 0
v= u + at
v= 5 × 2
v= 10ms-1
14)
v- u/t
10 - 20/ 25
10/25
=- 0.4 ms^-2
15)
a=v-u/t
From rest, u=0
8 - 0/10
a= 8/10
a= 0.8 ms^-2
Answer:
B. the stars to come back to the same positions in the sky.
Explanation:
In fact, the solar day is equivalent to more than a rotation, because when the point has turned completely, it is not, as it should, in the same position with respect to the Sun.
The reason for this is that while performing the rotation, the Earth simultaneously moved following its orbit around the Sun.
When the reference point completed its rotation, the Earth already moved almost 2,500,000 km., So that to see the Sun again it will be necessary to turn a little more.
Solar day is more than a rotation. The sidereal or sidereal day, commonly used by astronomers, is also based on the rotation of the Earth; but in this case a distant star is taken as a reference (sidereal comes from the Latin sidus which means "star").
Answer:
if you spoke this in english i can help you out
Explanation:
Answer:
A
Explanation:
absolute magnitude and luminosity vs the spectral position/ temperature
Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.