Answer:
1.17 mol
Explanation:
Step 1: Write the balanced equation
2 Al + 6 HCl → 2 AlCl₃ + 3 H₂
Step 2: Calculate the moles corresponding to 85.0 g of HCl
The molar mass of HCl is 36.46 g/mol.
85.0 g × 1 mol/36.46 g = 2.33 mol
Step 3: Calculate the number of moles of H₂ produced from 2.33 moles of HCl
The molar ratio of HCl to H₂ is 6:3.
2.33 mol HCl × 3 mol H₂/6 mol H₂ = 1.17 mol H₂
I think it’s A. The force of the stirring
Answer:
Hexenes + Dioxygen = Carbon Dioxide + Water
The reaction type is combustion.
Its reactants are Hexenes - C6H12 and Dioxygen - O2
its products are Carbon Dioxide - CO2 and Water - H2O
Explanation: This was my yesterdays class
Answer:
the decrease is the answer to the question
Answer:
5. The valence electrons of both fluorine and carbon are found at about the same distance from their respective nuclei but the greater positive charge of the fluorine nucleus attracts its valence electrons more strongly.
Explanation:
Both fluorine and carbon are located in the second period of the periodic table, it means that they have 2 shells, so the valence electrons are found at about the same distance from their respective nuclei.
But fluorine has a higher atomic number, 9, than the carbon, 6. The atomic number represents how many protons there are in the nucleus, then there are more protons (positive charge) at the fluorine nucleus, and because of that, the attraction force between the nucleus and the valence electron is stronger in fluorine.
If the force is stronger, it will be necessary more energy to break the bond, so it will be harder to remove an electron from fluorine than from carbon.