Answer:
H⁺(aq) + H₂O(l) ⇄ H₃O⁺(aq)
Explanation:
According to Brönsted-Lowry acid-base theory, an acid is a substance that donates H⁺. Let's consider the molecular equation showing that benzoic acid is a Brönsted-Lowry acid.
C₆H₅COOH(aq) + H₂O(l) ⇄ C₆H₅COO⁻(aq) + H₃O⁺(aq)
The complete ionic equation includes all the ions and molecular species.
C₆H₅COO⁻(aq) + H⁺(aq) + H₂O(l) ⇄ C₆H₅COO⁻(aq) + H₃O⁺(aq)
The net ionic equation includes only the ions that participate in the reaction and the molecular species.
H⁺(aq) + H₂O(l) ⇄ H₃O⁺(aq)
Answer:
Samira's model correctly demonstrates how the properties changed with the rearrangement of the atoms. However not all atoms are accounted for. There is a missing reactant.
Explanation:
Samira's model correctly demonstrated how the atoms in two compounds reacted to form two new products. However, the elements present in the reactants side should be the elements that make up the new products in the product side. But as the diagram shows, Sameera has mistakenly added a new element to one of her products which will be wrong.
No of protons=107+1=108
No. Of neutrons=158
Mass no. =166
In order to calculate how much heat is needed to raise the temperature you need to use the formula q =mass x specific heat x (final temperature- initial temperature) where q represents heat being absorbed or released. Before you begin you would convert kg to g because the specific heat is measure in g. So you would set up the equation as q = 358 g x .092 x (60-23 degrees Celsius) which would give you 1218.6
0.5 litres contain 1.1 moles
therefore 1 litre will have= 1*1.1/0.5
molarity=2.2M