Explanation:
We start by using the conservation law of energy:

or

Simplifying the above equation, we get

We can rewrite this as

Note that the expression inside the parenthesis is simply the acceleration due to gravity
so we can write

where
is the launch velocity.
Answer:
current in series is 2.50 mA
current in parallel is 13.51 mA
Explanation:
given data
voltage = 5 V
resistors R1 = 1.5 kilo ohms
resistors R2 = 0.5 kilo ohms
to given data
current flow
solution
current flow in series is express as here
current = voltage / resistor .................1
put here all value in equation 1
current = 5 / (1.5 + 0.5)
current = 5 / 2.0
so current = 2.50 mA
and
current flow in parallel is express as
current = voltage / resistor ....................2
put here all value in equation 2
current = 5 / (1/ (1/1.5 + 1/0.5))
current = 5 / 0.37
so current = 13.31 mA
Height (y) = 36t - 16t^2, where t = time in seconds (s).
Our height (y) after 1s = 36(1) - 16(1)^2
y = 36 - 16 = 20 ft
So it reached a height of 20 ft during that 1 second, which means that at that 1 second it had a velocity of 20ft/s, since v = d(distance)/t = 20ft/1s
D. Speed and direction, this is because velocity is a vector quantity so has a magnitude and direction assigned to it because it is the rate of change of displacement.
The correct answer to the question is : D) Be moving at a constant velocity.
EXPLANATION:
As per Newton's first laws of motion, every body continues to be at state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces acting on it.
Hence, it is the unbalanced force which changes the state of rest or motion of a body. Balanced force is responsible for keeping the body to be either in static equilibrium or in dynamic equilibrium.
As per the options given in the question, the last one is true for an object under balanced forces.