Answer:
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Explanation:
Given data
legs of length r = 0.68 m
diameter = 3100 km
mass = 4.8×10^22 kg
to find out
maximum velocity for walk on the surface of europa
solution
first we calculate radius that is
radius = d/2 = 3100 /2 = 1550 km
radius = 1550 × 10³ m
so we calculate no maximum velocity that is
max velocity = √(gr) ...............1
here r is length of leg
we know g = GM/r² from universal gravitational law
so G we know 6.67 ×
N-m²/kg²
g = 6.67 ×
( 4.8×10^22 ) / ( 1550 × 10³ )
g = 1.33 m/s²
now
we put all value in equation 1
max velocity = √(1.33 × 0.68)
max velocity = 0.950999 m/s
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Answer:
V = V_0 - (lamda)/(2pi(epsilon_0))*ln(R/r)
Explanation:
Attached is the full solution
Answer:
I feel like to demonstrate you would use an elastic band as the material. You obviously have to put force in order to see how far it stretches. From this you can also find about its resistance and durability
Also you have to make sure the distance between the two hands are equal as you want an accurate result.
Similar properties. Cause they have the same number of valence electrons
Answer:
it should be 8,000
Explanation:
because if you multiply the mass value by 1000, you will get 8,000
:):):):)