We have:
Initial velocity (u) = 1.6 m/s
Constant acceleration (a) = 0.33 m/s²
Time (t) = 3.6 sec
There are five constant acceleration equations that would help us to find the velocity:
Since we have
and we want
We will use the first formula
m/s
centrifugal force is a fictitious force. What is happening is that since the earth itself is not a rigid body it will deform when under motion. Although gravity attempts to make the earth spherical, as it is rotating the earth deforms, in such away that it flattens to become an oblique spheroid. This happens as the material at the equator must have a net resultant centripetal force (not centrifugal) which causes its position of equilibrium from the center of the earth to be further away than at the poles as they do not have this force as they are not rotating around the center of mass.
Answer:
i think number 2 should be your pfp
A small 20-kg canoe is floating downriver at a speed of 2 m/s. 40 J is the canoe’s kinetic energy.
Answer: Option A
<u>Explanation:</u>
The given canoe has the mass and is being given to move at a speed. Therefore the kinetic energy of the canoe can be calculated using the following method,
Given that mass of the canoe = 20 kg and its speed =1 m/s
As we know that the Kinetic energy has the formula,
Therefore, substituting the value into the equation, we get,
= 40 J