Answer:
7.12 mm
Explanation:
From coulomb's law,
F = kqq'/r².................... Equation 1
Where F = force, k = proportionality constant, q and q' = The two point charges, r = distance between the two charges.
Make r the subject of the equation,
r = √(kqq'/F).......................... Equation 2
Given: q = q' = 75.0 nC = 75×10⁻⁹ C, F = 1.00 N
Constant: k = 9.0×10⁹ Nm²/C².
Substitute into equation 2
r = √[ (75×10⁻⁹ )²9.0×10⁹/1]
r = 75×10⁻⁹.√(9.0×10⁹)
r = (75×10⁻⁹)(9.49×10⁴)
r = 711.75×10⁻⁵
r = 7.12×10⁻³ m
r = 7.12 mm
Hence the distance between the point charge = 7.12 mm
You should take note that the question is about stability. A compound is stable if it does not easily react with other elements. Hence, its reactivity must be low. As you move down the group, reactivity decreases. So, the halide at the very bottom is the least reactive. It would then be logical that the most stable conjugate base is I⁻ and the least stable conjugate base is the most reactive which is F⁻.
Answer: heat
Explanation:
Is that heat boils the liquid and the liquid eventually evaporated into gas
An anion is an ion with a negative charge. The minus sign, when attached to the end of an ionic compound, indicates that this has a negative charge, while a plus sign indicates a positive charge.
O2- is the only compound listed that satisfied this. It is the anion.
Answer is 02-
Atmospheric
pressure<span>, sometimes also called barometric pressure, is the pressure exerted by the weight of air in
the </span>atmosphere of Earth<span> (or that of another planet)</span>
1 atm is equivalent to = 101325
Pa
= 760 mmHg
= 760 torr
= 1.01325 bar
So 1.23 atm is equal to
= 124629.8 Pa
= 934.8 mmHg
= 934.8 torr
<span>= 1.2462 bar</span>