#82
here we know that
acceleration = 2 m/s/s
time = 5 s
initial speed = 4 m/s
now we can use kinematics to find the final speed



So correct answer will be option D)
#83
here we know that
acceleration = 3 m/s/s
time = 4 s
initial speed = 5 m/s
now we can use kinematics to find the final speed



So correct answer will be option C)
#84
here we know that
acceleration = 7 m/s/s
time = 3 s
initial speed = 8 m/s
now we can use kinematics to find the final speed



So correct answer will be option C)
voltage across 2.0μf capacitor is 5.32v
Given:
C1=2.0μf
C2=4.0μf
since two capacitors are in series there equivalent capacitance will be
[tex] \frac{1}{c} = \frac{1}{c1} + \frac{1}{c2} [/tex]


=1.33μf
As the capacitance of a capacitor is equal to the ratio of the stored charge to the potential difference across its plates, giving: C = Q/V, thus V = Q/C as Q is constant across all series connected capacitors, therefore the individual voltage drops across each capacitor is determined by its its capacitance value.
Q=CV
given,V=8v


charge on 2.0μf capacitor is


=5.32v
learn more about series capacitance from here: brainly.com/question/28166078
#SPJ4
Answer:
F = 11 N
Explanation:
Given,
Mass of a block, m = 5 kg
Acceleration of the block, a = 2.2 m/s²
We need to find the force on the person's hand. Let it is F. We know that force is given by the product of mass and acceleration as follows :
F = ma
F = 5 kg × 2.2 m/s²
F = 11 N
So, the force on a person's hand is 11 N.
Answer:
You cheated on a test, and you know it was the wrong thing to do. According to the psychoanalytic theory, what helped you know this?
The id controlled your biological response and made you sweaty because you were scared of getting caught.
The superego acted as your moral conscience; you just knew that it wasn't right to cheat.
The ego made you feel guilty as a defense mechanism. both B and C
Explanation:
the answer is both B,C
Answer:
L = mp*v₀*(ms*D) / (ms + mp)
Explanation:
Given info
ms = mass of the hockey stick
uis = 0 (initial speed of the hockey stick before the collision)
xis = D (initial position of center of mass of the hockey stick before the collision)
mp = mass of the puck
uip = v₀ (initial speed of the puck before the collision)
xip = 0 (initial position of center of mass of the puck before the collision)
If we apply
Ycm = (ms*xis + mp*xip) / (ms + mp)
⇒ Ycm = (ms*D + mp*0) / (ms + mp)
⇒ Ycm = (ms*D) / (ms + mp)
Now, we can apply the equation
L = m*v*R
where m = mp
v = v₀
R = Ycm
then we have
L = mp*v₀*(ms*D) / (ms + mp)