Answer:
V0 = 44.97m/s
Height above fence = 66.67m
Explanation:
The detailed calculation is done as shown in the attachment
We need to use Wien's Law
Wavelength = 0.0028976 [m.K] / T
This establishes a relation between the wavelength and temperature of a black body (any body that absorbs radiation, such as the stars)
T = 0.0028976 [m.K]/290 E-9[m] = 9991.724 K
The Speed of Light.
Photons emitted from the surface of the sun to travel across the vacuum of space to reach out eyes
A. IMA: 4
The Ideal Mechanical Advantage (IMA) is given by:

where
is the input distance
is the output distance
For the pulley system in this problem,
and
, so the IMA is

B. MA: 3.59
The actual mechanical advantage (AMA), or simply the Mechanical Advantage (MA), is given by

where
is the output force and
is the input force. For the pulley system in this problem,
and
, so the MA is

C. Efficiency: 89.8 %
The efficiency of a machine is equal to the ratio between the MA and the AMA:

Therefore, in this case,

Pushing a broke down car, even done by more than one person, is difficult especially if the distance to be covered is quite far. A car is heavy and it requires a lot of force to start the car moving. This is because the inertia of the car to remain at rest is great. Additionally, the force applied in pushing the car must be greater than the frictional force to cause it to accelerate. The frictional force is dependent on the mass of the object which means that the frictional force acting on the car is also great. Finally, with every push of the car, the frictional force will always be present and acting on the opposite direction. The push that will be supplied must be sustained all throughout.