"a quantity representing the amount of water vapor in the atmosphere or a gas."
The total pressure = 1.402 atm
<u><em>calculation</em></u>
Total pressure = partial pressure of gas A + partial pressure of gas B + partial pressure of third gas
partial pressure of gas A= 0.205 atm
Partial pressure of gas B =0.658 atm
partial pressure for third gas is calculated using ideal gas equation
that is PV=nRT where,
p(pressure)=? atm
V(volume) = 8.65 L
n(moles)= 0.200 moles
R(gas constant)=0.0821 L.atm/mol.k
T(temperature) = 11°c into kelvin =11+273 =284 k
make p the subject of the formula by diving both side by V
p =nRT/v
p = [(0.200 moles x 0.0821 L.atm/mol.K x 284 K)/8.65L)] =0.539 atm
Total pressure is therefore = 0.205 atm +0.658 atm +0.539 atm
=1.402 atm
Explanation:
As
is a covalent compound because it is made up by the combination of two non-metal atoms. Atomic number of an iodine atom is 53 and it contains 7 valence electrons as it belongs to group 17 of the periodic table.
Therefore, sharing of electrons will take place when two iodine atoms chemically combine with each other leading to the formation of a covalent bonding.
Hence, weak forces like london dispersion forces will be present between a molecule of
.
The weak intermolecular forces which can arise either between nucleus and electrons or between electron-electron are known as dispersion forces. These forces are also known as London dispersion forces and these are temporary in nature.
thus, we can conclude that london dispersion force is the major attractive force that exists among different
molecules in the solid.
Answer:
The answer is endothermic