Answer:
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Explanation:
When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.
The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.
Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.
Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).
The only correct option left is "A"
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Answer:
Some of the internal strain energy is relieved.
There is some reduction in the number of dislocations.
The electrical conductivity is recovered to its precold-worked state.
The thermal conductivity is recovered to its precold-worked state
Explanation:
The process of the recovery of a cold-worked material happens at a very low temperature, this process involves the movement and annihilation of points where there are defects, also there is the annihilation and change in position of dislocation points which leads to forming of the subgrains and the subgrains boundaries such as tilt, twist low angle boundaries.
Answer:
thank you for the free point have a great rest of your day
Answer:
a. 1.91 b. -8.13 mm
Explanation:
Modulus =stress/strain; calculating stress =F/A, hence determine the strain
Poisson's ratio =(change in diameter/diameter)/strain