Answer:
<em>No, the velocity profile does not change in the flow direction.</em>
Explanation:
In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>
Answer:
The answer is "
".
Explanation:
Please find the correct question in the attachment file.
using formula:



Answer:
(b)Distortion energy theory.
Explanation:
The best suitable theory for ductile material:
(1)Maximum shear stress theory (Guest and Tresca theory)
It theory state that applied maximum shear stress should be less or equal to its maximum shear strength.
(2)Maximum distortion energy theory(Von Mises henkey's theory)
It states that maximum shear train energy per unit volume at any point is equal to strain energy per unit volume under the state of uni axial stress condition.
But from these two Best theories ,suitable theory is distortion energy theory ,because it gives best suitable result for ductile material.
Answer:
Ususushehehehhuuiiïbbb
Explanation:
Yyshehshehshshsheyysysueueue
Answer:
a)We know that acceleration a=dv/dt
So dv/dt=kt^2
dv=kt^2dt
Integrating we get
v(t)=kt^3/3+C
Puttin t=0
-8=C
Putting t=2
8=8k/3-8
k=48/8
k=6