1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dima020 [189]
2 years ago
8

No links or viruses!

Physics
1 answer:
hjlf2 years ago
7 0

Which of the following are characteristics of noble gases?

{ \bf{ \underbrace{Answer :}}}

\sf\red{B. \:They're\: inert.} ✅

  • An inert gas is one that does not undergo chemical reactions. The noble gases have complete outer shells, so they have no tendency to lose, gain, or share electrons. This is why they are said to be inert.

\sf\purple{D.\: They \:don't \:react\: with\: other\: elements.}✅

  • Noble gases are the least reactive of all elements. This is because they already have the desired eight total 's' and 'p' electrons in their outermost (highest) energy level.

\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘

You might be interested in
Who invented the transistor
erma4kov [3.2K]

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

Some of the earliest work on semiconductor amplifiers emerged from Eastern Europe. In 1922-23 Russian engineer Oleg Losev of the Nizhegorod Radio Laboratory, Leningrad, found that a special mode of operation in a point-contact zincite (ZnO) crystal diode supported signal amplification up to 5 MHz. Although Losev experimented with the material in radio circuits for years, he died in the 1942 Siege of Leningrad and was unable to advocate for his place in history. His work is largely unknown.

Austro-Hungarian physicist, Julius E. Lilienfeld, moved to the US and in 1926 filed a patent for a “Method and Apparatus for Controlling Electric Currents” in which he described a three-electrode amplifying device using copper-sulfide semiconductor material. Lilienfeld is credited with inventing the electrolytic capacitor but there is no evidence that he built a working amplifier. His patent, however, had sufficient resemblance to the later field effect transistor to deny future patent applications for that structure.

<span>German scientists also contributed to this early research. While working at Cambridge University, England in 1934, German electrical engineer and inventor Oskar Heil filed a patent on controlling current flow in a semiconductor via capacitive coupling at an electrode – essentially a field-effect transistor. And in 1938, Robert Pohl and Rudolf Hilsch experimented on potassium-bromide crystals with three electrodes at Gottingen University. They reported amplification of low-frequency (about 1 Hz) signals. None of this research led to any applications but Heil is remembered in audiophile circles today for his air motion transformer used in high fidelity speakers.</span>

4 0
3 years ago
Read 2 more answers
You are working as an assistant to an air-traffic controller at the local airport, from which small airplanes take off and land.
Alika [10]

Answer:

d = 2021.6 km

Explanation:

We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them

Airplane 1

Height   y₁ = 800m

Angle θ = 25°

           cos 25 = x / r

           sin 25 = z / r

           x₁ = r cos 20

           z₁ = r sin 25

          x₁ = 18 103 cos 25 = 16,314 103 m = 16314 m

          z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m

2 plane

Height   y₂ = 1100 m

Angle θ = 20°

          x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m

          z₂ = 20 103 without 25 = 8.452 103 m = 8452 m

The distance between the planes using the Pythagorean Theorem is

         d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2

Let's calculate

        d² = (18126-16314)²  + (1100-800)² + (8452-7607)²

        d² = 3,283 106 +9 104 + 7,140 105

        d² = (328.3 + 9 + 71.40) 10⁴

        d = √(408.7 10⁴)

        d = 20,216 10² m

        d = 2021.6 km

7 0
3 years ago
A uniform solid disk of mass 5.00 kg and diameter 47.0 cm starts from rest and rolls without slipping down a 40.0 ∘ incline that
saveliy_v [14]

Answer:

The speed it reaches the bottom is

v=6.51m/s

Explanation:

Given: m=5.0kg, r=47cm\frac{1m}{100cm}=0.47m

Using the conservation of energy theorem

U_i=K_E+K_{ER}

m*g*h=\frac{1}{2}*m*v^2+\frac{1}{2}*I*w^2

v=r*w, I=\frac{1}{2}*m*r^2

m*g*h=\frac{1}{2}*m*(r*w)^2 +\frac{1}{2}*[\frac{1}{2} *m*r^2]*w^2

m*g*h=\frac{3}{4}*m*r^2*w^2

g*h=\frac{3}{4}*r^2*w^2

Solve to w'

w^2=\frac{4*g*h}{3*r^2}

h=x*sin(30)=6.5m*sin(30)=3.25m

w=\sqrt{\frac{4*9.8m/s^2*3.25m}{3*(0.235m)^2}}

w=27.74rad/s

v=27.74rad/s*0.235m=6.51m/s

7 0
3 years ago
60 POINTS model how sound produced by a singer is recorded by a microphone and reproduced by a speaker (sound model) WITH RUBIC
Nikolay [14]

Answer:

Explanation: i don't know bro

6 0
2 years ago
A device for acclimating military pilots to the high accelerations they must experience consists of a horizontal beam that rotat
Natali [406]

centripetal acceleration is given by formula

a_c = \omega^2*R

given that

a_c = 34.1 m/s^2

R  =  5.91 m

now we have

\omega^2 R = 34.1

\omega^2 * 5.91 = 34.1

\omega^2 = 5.77

\omega = 2.4 rad/s

so the ratationa frequency is given by

\omega = 2 \pi f

2.4 = 2 \pi f

f = \frac{2.4}{2\pi}

f = 0.38 Hz

7 0
3 years ago
Other questions:
  • Which statements describe diffraction? Check all that apply.
    12·2 answers
  • An ion with charge of Q = +3.2 x 10-19 C is in a region where a uniform electric field of magnitude E = 5.0 X 105 V/m is perpend
    7·1 answer
  • A teacher explains that a scientist named Boyle did many experiments to determine what the relationship is between the volume an
    11·1 answer
  • The neck is a _______.
    13·2 answers
  • A train accelerates at -1.5 m/s2 for 10 seconds. If the train had an initial speed of 32 m/s, what is its new speed?
    9·1 answer
  • What is the energy of a photon that has the same wavelength as an electron having a kinetic energy of 15 ev?
    6·1 answer
  • Is superman faster than flash?
    5·2 answers
  • What is potential energy
    13·1 answer
  • HELP SCIENCE 8 15 pts
    15·1 answer
  • Consider the surface with parametric equations .
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!