One of the concepts to be used to solve this problem is that of thermal efficiency, that is, that coefficient or dimensionless ratio calculated as the ratio of the energy produced and the energy supplied to the machine.
From the temperature the value is given as

Where,
T_L = Cold focus temperature
T_H = Hot spot temperature
Our values are given as,
T_L = 20\° C = (20+273) K = 293 K
T_H = 440\° C = (440+273) K = 713 K
Replacing we have,



Therefore the maximum possible efficiency the car can have is 58.9%
Answer:
They can use it for when they are dormant in the winter or to grow more sources for storing and creating energy, or they store the energy (this energy would be considered stored energy).
It traveled 200 m in 50 seconds. 200/50 can be simplified to 4 m/s!
The velocity is -4 m/s (negative because it travelled from 100 to -100 or backwards)
Momentum, p = m.v
m of the girl = 60.0 kg
m of the boat = 180 kg
v of the girl = 4.0 m/s
A) Momentum of the girl as she is diving:
p = m.v = 60.0 kg * 4.0 m/s = 24.0 N/s
B) momentum of the raft = - momentum of the girl = -24.0 N/s
C) speed of the raft
p = m.v ; v = p/m = 24.0N/s / 180 kg = -0.13 m/s [i.e. in the opposite direction of the girl's velocity]
In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents through each component. If two or more components are connected in parallel they have the same potential difference ( voltage) across their ends.