To solve this problem it is necessary to apply the continuity equations in the fluid and the kinematic equation for the description of the displacement, velocity and acceleration.
By definition the movement of the Fluid under the terms of Speed, acceleration and displacement is,

Where,
Velocity in each state
g= Gravity
h = Height
Our values are given as,



Replacing at the kinetic equation to find
we have,



Applying the concepts of continuity,

We need to find A_2 then,

So the cross sectional area of the water stream at a point 0.11 m below the faucet is



Therefore the cross-sectional area of the water stream at a point 0.11 m below the faucet is 
Answer:
Resistance increases with increase in temperature which depends on power supplied which also depends on voltage.
Thermal expansion will make resistance larger.
Explanation:
Light bulb is a good example of a filament lamp. If we plot the graph of voltage against current we will notice that resistance is constant at constant temperature.
The filament heats up when an electric current passes through it, and produces light as a result.
The resistance of a lamp increases as the temperature of its filament increases. The current flowing through a filament lamp is not directly proportional to the voltage across it.
tensile stress begins to appear in resistor as the temperature rises. Thus, the resistance value increases as the temperature rises. Resistance value can only decrease as the temperature rises in case of thin film resistor with aluminium substrate.
In case of a filament bulb, the resistance will increase as increase in length of the wire. The thermal expansion in this regard is linear expansivity in which resistance is proportional to length of the wire.
Resistance therefore get larger.
Answer:
(a) Bus will traveled further a distance of 40 m
(b) It will take 7.5 sec to stop the bus
Explanation:
We have given initial velocity of the bus u = 24 m/sec
And final velocity v = 16 m/sec
Distance traveled in this process s = 50 m
From third equation of motion we know that 


(a) Now as the bus finally stops so final velocity v = 0 m/sec
So 

s= 90 m
So further distance traveled by bus = 90-50 =40 m
(b) Now as the bus finally stops so final velocity v= 0 m/sec
Initial velocity u = 24 m/sec
Acceleration 
So time 