<em>9. A</em>
<em>10. B</em>
<em>11. B</em>
<em>12. C</em>
<em>13. D</em>
<em>14. C
</em>
I hope this helped! (:
Answer:
b the valence of the atoms involved
Explanation:
i just did this
Answer:
[H₂] = 1.61x10⁻³ M
Explanation:
2H₂S(g) ⇋ 2H₂(g) + S₂(g)
Kc = 9.30x10⁻⁸ = ![\frac{[H_{2}]^2[S_{2}]}{[H_{2}S]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH_%7B2%7D%5D%5E2%5BS_%7B2%7D%5D%7D%7B%5BH_%7B2%7DS%5D%5E2%7D)
First we <u>calculate the initial concentration</u>:
0.45 molH₂S / 3.0L = 0.15 M
The concentrations at equilibrium would be:
[H₂S] = 0.15 - 2x
[H₂] = 2x
[S₂] = x
We <u>put the data in the Kc expression and solve for x</u>:


We make a simplification because x<<< 0.0225:

x = 8.058x10⁻⁴
[H₂] = 2*x = 1.61x10⁻³ M
Answer:
False
Explanation:
Compounds are chemically combined
lemonade is not
If the squeezed lemonade is made by squeezing lemons to extract the juice and mixing it with water and sugar, it would be a homogenous mixture.
If it contains a pulp than it would be heterogeneous